Atomistic simulations of α-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications

Nd 2 Fe 14 B has generated significant interest since its discovery in the 1980s due to its impressive energy density, which makes it a prime candidate for use in permanent magnet applications. Its performance is known to suffer greatly at the high temperatures required for motor applications around...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-04, Vol.127 (13)
Hauptverfasser: Westmoreland, Sam C., Skelland, Connor, Shoji, Tetsuya, Yano, Masao, Kato, Akira, Ito, Masaaki, Hrkac, Gino, Schrefl, Thomas, Evans, Richard F. L., Chantrell, Roy W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Journal of applied physics
container_volume 127
creator Westmoreland, Sam C.
Skelland, Connor
Shoji, Tetsuya
Yano, Masao
Kato, Akira
Ito, Masaaki
Hrkac, Gino
Schrefl, Thomas
Evans, Richard F. L.
Chantrell, Roy W.
description Nd 2 Fe 14 B has generated significant interest since its discovery in the 1980s due to its impressive energy density, which makes it a prime candidate for use in permanent magnet applications. Its performance is known to suffer greatly at the high temperatures required for motor applications around 450 K. Core/shell nanocomposites provide a potential route to improve material performance by combining the highly anisotropic permanent magnet with a material with high moment and high Curie temperature. We have used an atomistic spin model to investigate the magnetic properties of Nd 2 Fe 14 B with α - F e in a core/shell nanostructure. We find that at typical motor operating temperatures, increasing α - F e content reduces the coercivity of the system while enhancing the saturation magnetization. The overall effect is that an improvement in B H max is seen with increasing α - F e up to an optimal value of 70 vol . %. This property of core/shell nanostructures would make them a suitable substitute for pure Nd 2 Fe 14 B while simultaneously lowering the raw material cost of the permanent magnet component of high-performance motors.
doi_str_mv 10.1063/1.5126327
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2385056910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385056910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-e2bc6e2fb75cbc9a386d3e7a0025623379015d8e36883d1d1c68bbb0ade6e1c33</originalsourceid><addsrcrecordid>eNp9kEFKxDAYhYMoOI4uvEHAlUKdpLFpulRxVBDd6Lqkyd9ppE1qkipzFW_hRTyTHWfQheDqf4uP97_3EDqk5JQSzmb0NKMpZ2m-hSaUiCLJs4xsowkhKU1EkRe7aC-EZ0IoFayYoPfz6DoTolE4mG5oZTTOBuxq_PmRzGF2r9M50LML3MmFhRWmnIdZaKBtsZXWKdf1LpgIAb-Z2GCwjbQK9CjAL5a4904PKuLaedyYRYMjdD14GQcPeBSdtGDjxh7Lvm-NWofYRzu1bAMcbO4UPc2vHi9vkruH69vL87tEjTVjAmmlOKR1lWeqUoVkgmsGuRwbZzxlLC8IzbQAxoVgmmqquKiqikgNHKhibIqO1r5j1JcBQiyf3eDt-LJMmchIxgtKRup4TSnvQvBQl703nfTLkpJyNX1Jy830I3uyZoMy8bvMD_zq_C9Y9rr-D_7r_AXbG5YM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385056910</pqid></control><display><type>article</type><title>Atomistic simulations of α-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Westmoreland, Sam C. ; Skelland, Connor ; Shoji, Tetsuya ; Yano, Masao ; Kato, Akira ; Ito, Masaaki ; Hrkac, Gino ; Schrefl, Thomas ; Evans, Richard F. L. ; Chantrell, Roy W.</creator><creatorcontrib>Westmoreland, Sam C. ; Skelland, Connor ; Shoji, Tetsuya ; Yano, Masao ; Kato, Akira ; Ito, Masaaki ; Hrkac, Gino ; Schrefl, Thomas ; Evans, Richard F. L. ; Chantrell, Roy W.</creatorcontrib><description>Nd 2 Fe 14 B has generated significant interest since its discovery in the 1980s due to its impressive energy density, which makes it a prime candidate for use in permanent magnet applications. Its performance is known to suffer greatly at the high temperatures required for motor applications around 450 K. Core/shell nanocomposites provide a potential route to improve material performance by combining the highly anisotropic permanent magnet with a material with high moment and high Curie temperature. We have used an atomistic spin model to investigate the magnetic properties of Nd 2 Fe 14 B with α - F e in a core/shell nanostructure. We find that at typical motor operating temperatures, increasing α - F e content reduces the coercivity of the system while enhancing the saturation magnetization. The overall effect is that an improvement in B H max is seen with increasing α - F e up to an optimal value of 70 vol . %. This property of core/shell nanostructures would make them a suitable substitute for pure Nd 2 Fe 14 B while simultaneously lowering the raw material cost of the permanent magnet component of high-performance motors.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5126327</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Coercivity ; Computer simulation ; Core-shell structure ; Curie temperature ; Flux density ; High temperature ; Iron ; Magnetic cores ; Magnetic properties ; Magnetic saturation ; Magnetism ; Molding materials ; Nanocomposites ; Nanostructure ; Operating temperature ; Permanent magnets</subject><ispartof>Journal of applied physics, 2020-04, Vol.127 (13)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-e2bc6e2fb75cbc9a386d3e7a0025623379015d8e36883d1d1c68bbb0ade6e1c33</citedby><cites>FETCH-LOGICAL-c327t-e2bc6e2fb75cbc9a386d3e7a0025623379015d8e36883d1d1c68bbb0ade6e1c33</cites><orcidid>0000-0001-7284-135X ; 0000-0002-4549-6367 ; 0000-0002-2378-8203 ; 0000-0002-4399-8216 ; 0000-0001-5410-5615 ; 0000-0002-0871-0520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5126327$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Westmoreland, Sam C.</creatorcontrib><creatorcontrib>Skelland, Connor</creatorcontrib><creatorcontrib>Shoji, Tetsuya</creatorcontrib><creatorcontrib>Yano, Masao</creatorcontrib><creatorcontrib>Kato, Akira</creatorcontrib><creatorcontrib>Ito, Masaaki</creatorcontrib><creatorcontrib>Hrkac, Gino</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><creatorcontrib>Evans, Richard F. L.</creatorcontrib><creatorcontrib>Chantrell, Roy W.</creatorcontrib><title>Atomistic simulations of α-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications</title><title>Journal of applied physics</title><description>Nd 2 Fe 14 B has generated significant interest since its discovery in the 1980s due to its impressive energy density, which makes it a prime candidate for use in permanent magnet applications. Its performance is known to suffer greatly at the high temperatures required for motor applications around 450 K. Core/shell nanocomposites provide a potential route to improve material performance by combining the highly anisotropic permanent magnet with a material with high moment and high Curie temperature. We have used an atomistic spin model to investigate the magnetic properties of Nd 2 Fe 14 B with α - F e in a core/shell nanostructure. We find that at typical motor operating temperatures, increasing α - F e content reduces the coercivity of the system while enhancing the saturation magnetization. The overall effect is that an improvement in B H max is seen with increasing α - F e up to an optimal value of 70 vol . %. This property of core/shell nanostructures would make them a suitable substitute for pure Nd 2 Fe 14 B while simultaneously lowering the raw material cost of the permanent magnet component of high-performance motors.</description><subject>Applied physics</subject><subject>Coercivity</subject><subject>Computer simulation</subject><subject>Core-shell structure</subject><subject>Curie temperature</subject><subject>Flux density</subject><subject>High temperature</subject><subject>Iron</subject><subject>Magnetic cores</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetism</subject><subject>Molding materials</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Operating temperature</subject><subject>Permanent magnets</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFKxDAYhYMoOI4uvEHAlUKdpLFpulRxVBDd6Lqkyd9ppE1qkipzFW_hRTyTHWfQheDqf4uP97_3EDqk5JQSzmb0NKMpZ2m-hSaUiCLJs4xsowkhKU1EkRe7aC-EZ0IoFayYoPfz6DoTolE4mG5oZTTOBuxq_PmRzGF2r9M50LML3MmFhRWmnIdZaKBtsZXWKdf1LpgIAb-Z2GCwjbQK9CjAL5a4904PKuLaedyYRYMjdD14GQcPeBSdtGDjxh7Lvm-NWofYRzu1bAMcbO4UPc2vHi9vkruH69vL87tEjTVjAmmlOKR1lWeqUoVkgmsGuRwbZzxlLC8IzbQAxoVgmmqquKiqikgNHKhibIqO1r5j1JcBQiyf3eDt-LJMmchIxgtKRup4TSnvQvBQl703nfTLkpJyNX1Jy830I3uyZoMy8bvMD_zq_C9Y9rr-D_7r_AXbG5YM</recordid><startdate>20200407</startdate><enddate>20200407</enddate><creator>Westmoreland, Sam C.</creator><creator>Skelland, Connor</creator><creator>Shoji, Tetsuya</creator><creator>Yano, Masao</creator><creator>Kato, Akira</creator><creator>Ito, Masaaki</creator><creator>Hrkac, Gino</creator><creator>Schrefl, Thomas</creator><creator>Evans, Richard F. L.</creator><creator>Chantrell, Roy W.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7284-135X</orcidid><orcidid>https://orcid.org/0000-0002-4549-6367</orcidid><orcidid>https://orcid.org/0000-0002-2378-8203</orcidid><orcidid>https://orcid.org/0000-0002-4399-8216</orcidid><orcidid>https://orcid.org/0000-0001-5410-5615</orcidid><orcidid>https://orcid.org/0000-0002-0871-0520</orcidid></search><sort><creationdate>20200407</creationdate><title>Atomistic simulations of α-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications</title><author>Westmoreland, Sam C. ; Skelland, Connor ; Shoji, Tetsuya ; Yano, Masao ; Kato, Akira ; Ito, Masaaki ; Hrkac, Gino ; Schrefl, Thomas ; Evans, Richard F. L. ; Chantrell, Roy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-e2bc6e2fb75cbc9a386d3e7a0025623379015d8e36883d1d1c68bbb0ade6e1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Coercivity</topic><topic>Computer simulation</topic><topic>Core-shell structure</topic><topic>Curie temperature</topic><topic>Flux density</topic><topic>High temperature</topic><topic>Iron</topic><topic>Magnetic cores</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetism</topic><topic>Molding materials</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Operating temperature</topic><topic>Permanent magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westmoreland, Sam C.</creatorcontrib><creatorcontrib>Skelland, Connor</creatorcontrib><creatorcontrib>Shoji, Tetsuya</creatorcontrib><creatorcontrib>Yano, Masao</creatorcontrib><creatorcontrib>Kato, Akira</creatorcontrib><creatorcontrib>Ito, Masaaki</creatorcontrib><creatorcontrib>Hrkac, Gino</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><creatorcontrib>Evans, Richard F. L.</creatorcontrib><creatorcontrib>Chantrell, Roy W.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westmoreland, Sam C.</au><au>Skelland, Connor</au><au>Shoji, Tetsuya</au><au>Yano, Masao</au><au>Kato, Akira</au><au>Ito, Masaaki</au><au>Hrkac, Gino</au><au>Schrefl, Thomas</au><au>Evans, Richard F. L.</au><au>Chantrell, Roy W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic simulations of α-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications</atitle><jtitle>Journal of applied physics</jtitle><date>2020-04-07</date><risdate>2020</risdate><volume>127</volume><issue>13</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Nd 2 Fe 14 B has generated significant interest since its discovery in the 1980s due to its impressive energy density, which makes it a prime candidate for use in permanent magnet applications. Its performance is known to suffer greatly at the high temperatures required for motor applications around 450 K. Core/shell nanocomposites provide a potential route to improve material performance by combining the highly anisotropic permanent magnet with a material with high moment and high Curie temperature. We have used an atomistic spin model to investigate the magnetic properties of Nd 2 Fe 14 B with α - F e in a core/shell nanostructure. We find that at typical motor operating temperatures, increasing α - F e content reduces the coercivity of the system while enhancing the saturation magnetization. The overall effect is that an improvement in B H max is seen with increasing α - F e up to an optimal value of 70 vol . %. This property of core/shell nanostructures would make them a suitable substitute for pure Nd 2 Fe 14 B while simultaneously lowering the raw material cost of the permanent magnet component of high-performance motors.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5126327</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7284-135X</orcidid><orcidid>https://orcid.org/0000-0002-4549-6367</orcidid><orcidid>https://orcid.org/0000-0002-2378-8203</orcidid><orcidid>https://orcid.org/0000-0002-4399-8216</orcidid><orcidid>https://orcid.org/0000-0001-5410-5615</orcidid><orcidid>https://orcid.org/0000-0002-0871-0520</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-04, Vol.127 (13)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2385056910
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Coercivity
Computer simulation
Core-shell structure
Curie temperature
Flux density
High temperature
Iron
Magnetic cores
Magnetic properties
Magnetic saturation
Magnetism
Molding materials
Nanocomposites
Nanostructure
Operating temperature
Permanent magnets
title Atomistic simulations of α-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20simulations%20of%20%CE%B1-Fe/Nd2Fe14B%20magnetic%20core/shell%20nanocomposites%20with%20enhanced%20energy%20product%20for%20high%20temperature%20permanent%20magnet%20applications&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Westmoreland,%20Sam%20C.&rft.date=2020-04-07&rft.volume=127&rft.issue=13&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5126327&rft_dat=%3Cproquest_scita%3E2385056910%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385056910&rft_id=info:pmid/&rfr_iscdi=true