Atomistic simulations of α-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications

Nd 2 Fe 14 B has generated significant interest since its discovery in the 1980s due to its impressive energy density, which makes it a prime candidate for use in permanent magnet applications. Its performance is known to suffer greatly at the high temperatures required for motor applications around...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-04, Vol.127 (13)
Hauptverfasser: Westmoreland, Sam C., Skelland, Connor, Shoji, Tetsuya, Yano, Masao, Kato, Akira, Ito, Masaaki, Hrkac, Gino, Schrefl, Thomas, Evans, Richard F. L., Chantrell, Roy W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nd 2 Fe 14 B has generated significant interest since its discovery in the 1980s due to its impressive energy density, which makes it a prime candidate for use in permanent magnet applications. Its performance is known to suffer greatly at the high temperatures required for motor applications around 450 K. Core/shell nanocomposites provide a potential route to improve material performance by combining the highly anisotropic permanent magnet with a material with high moment and high Curie temperature. We have used an atomistic spin model to investigate the magnetic properties of Nd 2 Fe 14 B with α - F e in a core/shell nanostructure. We find that at typical motor operating temperatures, increasing α - F e content reduces the coercivity of the system while enhancing the saturation magnetization. The overall effect is that an improvement in B H max is seen with increasing α - F e up to an optimal value of 70 vol . %. This property of core/shell nanostructures would make them a suitable substitute for pure Nd 2 Fe 14 B while simultaneously lowering the raw material cost of the permanent magnet component of high-performance motors.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5126327