Climate variability over South America‐regional and large scale features simulated by the Brazilian Atmospheric Model (BAM‐v0)
The reliability of climate prediction by a global model is directly related to the ability to simulate the observed climate variability and the main teleconnection patterns. Precipitation anomalies in certain regions are strongly affected by these features, and it is important to know if models are...
Gespeichert in:
Veröffentlicht in: | International journal of climatology 2020-04, Vol.40 (5), p.2845-2869 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The reliability of climate prediction by a global model is directly related to the ability to simulate the observed climate variability and the main teleconnection patterns. Precipitation anomalies in certain regions are strongly affected by these features, and it is important to know if models are able to reproduce such patterns and influences. The main objective of this article is to analyse some global features of the Brazilian Atmospheric Model with simplified physics (BAM‐v0), and to discuss several aspects of climate variability over South America. Especially, the ability of the model in simulating the main teleconnection patterns that affect South America and the precipitation variability in several regions of Brazil associated with the Pacific and Atlantic Sea Surface Temperature. The model is the atmospheric component of the Brazilian Earth System Model‐Ocean–Atmosphere (BESM), which can be used to long integrations due to the simplified physics, considering computer limitations. Climate variability is investigated through analyses of variance and correlations, and teleconnections such as Southern Annular Mode (SAM) and Pacific South American (PSA) are obtained from EOF analyses. El Niño Southern Oscillation (ENSO) features are analysed through the Southern Oscillation Index and precipitation anomalies. BAM‐v0, even at coarse resolution, represents many climate variability features. It captures the influences of tropical Pacific and Atlantic Oceans on Northeast Brazil precipitation and reproduces the influences of ENSO over South America. SAM and PSA teleconnections are well simulated. Observed features of the South America Monsoon System are captured by the model, although the intensities of precipitation variability need to be improved. There are some deficiencies related to global budget, precipitation variance in some regions of the globe and precipitation anomalies in certain regions of South America. Identification of model deficiencies and variability analyses are important to model development and contribute to climate prediction improvements.
The model simulates the main teleconnection patterns that affect South America, such as ENSO, SAM and PSA. The best simulation of interannual precipitation variability occurs in the Northeast Brazil, region affected by the tropical Pacific and Atlantic SST. The model reproduces the ENSO influences over South America precipitation, such as the opposite anomalies between Northeast and South Brazil. Obs |
---|---|
ISSN: | 0899-8418 1097-0088 |
DOI: | 10.1002/joc.6370 |