One-Dimensional Symmetry for the Solutions of a Three-Dimensional Water Wave Problem
We prove a one-dimensional symmetry result for a weighted Dirichlet-to-Neumann problem arising in a model for water waves in dimensions 2 and 3. More precisely, we prove that stable solutions in dimension 2 and minimizers and monotone solutions in dimension 3 depend on only one Euclidean variable. M...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2020-04, Vol.30 (2), p.1804-1835 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a one-dimensional symmetry result for a weighted Dirichlet-to-Neumann problem arising in a model for water waves in dimensions 2 and 3. More precisely, we prove that stable solutions in dimension 2 and minimizers and monotone solutions in dimension 3 depend on only one Euclidean variable. Monotone solutions in the 2-dimensional case without weights were studied in de la Llave and Valdinoci (Math Res Lett 16(5):909–918,
2009
). In our paper, a crucial ingredient in the proof is given by an energy estimate for minimizers obtained via a comparison argument. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-019-00279-z |