One-Dimensional Symmetry for the Solutions of a Three-Dimensional Water Wave Problem

We prove a one-dimensional symmetry result for a weighted Dirichlet-to-Neumann problem arising in a model for water waves in dimensions 2 and 3. More precisely, we prove that stable solutions in dimension 2 and minimizers and monotone solutions in dimension 3 depend on only one Euclidean variable. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2020-04, Vol.30 (2), p.1804-1835
Hauptverfasser: Cinti, Eleonora, Miraglio, Pietro, Valdinoci, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a one-dimensional symmetry result for a weighted Dirichlet-to-Neumann problem arising in a model for water waves in dimensions 2 and 3. More precisely, we prove that stable solutions in dimension 2 and minimizers and monotone solutions in dimension 3 depend on only one Euclidean variable. Monotone solutions in the 2-dimensional case without weights were studied in de la Llave and Valdinoci (Math Res Lett 16(5):909–918, 2009 ). In our paper, a crucial ingredient in the proof is given by an energy estimate for minimizers obtained via a comparison argument.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-019-00279-z