The Restriction Operator on Bergman Spaces

Motivated by questions related to the compactness of the ∂ ¯ -Neumann operator, we study the restriction operator from the Bergman space of a domain in C n to the Bergman space of a non-empty open subset of the domain. We relate the restriction operator to the Toeplitz operator on the Bergman space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2020-04, Vol.30 (2), p.2157-2188
Hauptverfasser: Chakrabarti, Debraj, Şahutoğlu, Sönmez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2188
container_issue 2
container_start_page 2157
container_title The Journal of Geometric Analysis
container_volume 30
creator Chakrabarti, Debraj
Şahutoğlu, Sönmez
description Motivated by questions related to the compactness of the ∂ ¯ -Neumann operator, we study the restriction operator from the Bergman space of a domain in C n to the Bergman space of a non-empty open subset of the domain. We relate the restriction operator to the Toeplitz operator on the Bergman space of the domain whose symbol is the characteristic function of the subset. Using the biholomorphic invariance of the spectrum of the associated Toeplitz operator, we study the restriction operator from the Bergman space of the unit disc to the Bergman space of subdomains with large symmetry groups, such as horodiscs and subdomains bounded by hypercycles. Furthermore, we prove a sharp estimate of the norm of the restriction operator in case the domain and the subdomain are balls. We also study various operator theoretic properties of the restriction operator such as compactness and essential norm estimates.
doi_str_mv 10.1007/s12220-019-00178-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2384860725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339966</galeid><sourcerecordid>A707339966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9d7f8dd5613d8e36a9e88ec60ef0d04e1227020b47df5ce2bf4b5cea63c1d61e3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOCN2HrJNlNssdarAqFglbwFtJkUre0u2uyPfjvTV3Bm8xhJsP7Jo9HyDWFCQWQd5EyxiAHWuUAVKqcn5ARLcvjk72fphlKyEXFxDm5iHELUAheyBG5XX1g9oKxD7Xt67bJlh0G07chS_M9hs3eNNlrZyzGS3LmzS7i1W8fk7f5w2r2lC-Wj8-z6SK3vFR9XjnplXOloNwp5MJUqBRaAejBQYHJqQQG60I6X1pka1-sUzeCW-oERT4mN8PdLrSfh2RNb9tDaNKXmnFVKAGSlUk1GVQbs0NdN77tg7GpHO5r2zbo67SfSpCcV5UQCWADYEMbY0Cvu1DvTfjSFPQxRD2EqFOI-idEzRPEBygmcbPB8OflH-obd9NzDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384860725</pqid></control><display><type>article</type><title>The Restriction Operator on Bergman Spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chakrabarti, Debraj ; Şahutoğlu, Sönmez</creator><creatorcontrib>Chakrabarti, Debraj ; Şahutoğlu, Sönmez</creatorcontrib><description>Motivated by questions related to the compactness of the ∂ ¯ -Neumann operator, we study the restriction operator from the Bergman space of a domain in C n to the Bergman space of a non-empty open subset of the domain. We relate the restriction operator to the Toeplitz operator on the Bergman space of the domain whose symbol is the characteristic function of the subset. Using the biholomorphic invariance of the spectrum of the associated Toeplitz operator, we study the restriction operator from the Bergman space of the unit disc to the Bergman space of subdomains with large symmetry groups, such as horodiscs and subdomains bounded by hypercycles. Furthermore, we prove a sharp estimate of the norm of the restriction operator in case the domain and the subdomain are balls. We also study various operator theoretic properties of the restriction operator such as compactness and essential norm estimates.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-019-00178-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Characteristic functions ; Convex and Discrete Geometry ; Differential Geometry ; Domains ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2020-04, Vol.30 (2), p.2157-2188</ispartof><rights>Mathematica Josephina, Inc. 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Mathematica Josephina, Inc. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-9d7f8dd5613d8e36a9e88ec60ef0d04e1227020b47df5ce2bf4b5cea63c1d61e3</citedby><cites>FETCH-LOGICAL-c358t-9d7f8dd5613d8e36a9e88ec60ef0d04e1227020b47df5ce2bf4b5cea63c1d61e3</cites><orcidid>0000-0002-0473-8542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-019-00178-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-019-00178-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chakrabarti, Debraj</creatorcontrib><creatorcontrib>Şahutoğlu, Sönmez</creatorcontrib><title>The Restriction Operator on Bergman Spaces</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>Motivated by questions related to the compactness of the ∂ ¯ -Neumann operator, we study the restriction operator from the Bergman space of a domain in C n to the Bergman space of a non-empty open subset of the domain. We relate the restriction operator to the Toeplitz operator on the Bergman space of the domain whose symbol is the characteristic function of the subset. Using the biholomorphic invariance of the spectrum of the associated Toeplitz operator, we study the restriction operator from the Bergman space of the unit disc to the Bergman space of subdomains with large symmetry groups, such as horodiscs and subdomains bounded by hypercycles. Furthermore, we prove a sharp estimate of the norm of the restriction operator in case the domain and the subdomain are balls. We also study various operator theoretic properties of the restriction operator such as compactness and essential norm estimates.</description><subject>Abstract Harmonic Analysis</subject><subject>Characteristic functions</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Domains</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOCN2HrJNlNssdarAqFglbwFtJkUre0u2uyPfjvTV3Bm8xhJsP7Jo9HyDWFCQWQd5EyxiAHWuUAVKqcn5ARLcvjk72fphlKyEXFxDm5iHELUAheyBG5XX1g9oKxD7Xt67bJlh0G07chS_M9hs3eNNlrZyzGS3LmzS7i1W8fk7f5w2r2lC-Wj8-z6SK3vFR9XjnplXOloNwp5MJUqBRaAejBQYHJqQQG60I6X1pka1-sUzeCW-oERT4mN8PdLrSfh2RNb9tDaNKXmnFVKAGSlUk1GVQbs0NdN77tg7GpHO5r2zbo67SfSpCcV5UQCWADYEMbY0Cvu1DvTfjSFPQxRD2EqFOI-idEzRPEBygmcbPB8OflH-obd9NzDA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Chakrabarti, Debraj</creator><creator>Şahutoğlu, Sönmez</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-0473-8542</orcidid></search><sort><creationdate>20200401</creationdate><title>The Restriction Operator on Bergman Spaces</title><author>Chakrabarti, Debraj ; Şahutoğlu, Sönmez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9d7f8dd5613d8e36a9e88ec60ef0d04e1227020b47df5ce2bf4b5cea63c1d61e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Characteristic functions</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Domains</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarti, Debraj</creatorcontrib><creatorcontrib>Şahutoğlu, Sönmez</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarti, Debraj</au><au>Şahutoğlu, Sönmez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Restriction Operator on Bergman Spaces</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>2</issue><spage>2157</spage><epage>2188</epage><pages>2157-2188</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>Motivated by questions related to the compactness of the ∂ ¯ -Neumann operator, we study the restriction operator from the Bergman space of a domain in C n to the Bergman space of a non-empty open subset of the domain. We relate the restriction operator to the Toeplitz operator on the Bergman space of the domain whose symbol is the characteristic function of the subset. Using the biholomorphic invariance of the spectrum of the associated Toeplitz operator, we study the restriction operator from the Bergman space of the unit disc to the Bergman space of subdomains with large symmetry groups, such as horodiscs and subdomains bounded by hypercycles. Furthermore, we prove a sharp estimate of the norm of the restriction operator in case the domain and the subdomain are balls. We also study various operator theoretic properties of the restriction operator such as compactness and essential norm estimates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-019-00178-3</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-0473-8542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2020-04, Vol.30 (2), p.2157-2188
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2384860725
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Characteristic functions
Convex and Discrete Geometry
Differential Geometry
Domains
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title The Restriction Operator on Bergman Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Restriction%20Operator%20on%20Bergman%20Spaces&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Chakrabarti,%20Debraj&rft.date=2020-04-01&rft.volume=30&rft.issue=2&rft.spage=2157&rft.epage=2188&rft.pages=2157-2188&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-019-00178-3&rft_dat=%3Cgale_proqu%3EA707339966%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384860725&rft_id=info:pmid/&rft_galeid=A707339966&rfr_iscdi=true