The Restriction Operator on Bergman Spaces

Motivated by questions related to the compactness of the ∂ ¯ -Neumann operator, we study the restriction operator from the Bergman space of a domain in C n to the Bergman space of a non-empty open subset of the domain. We relate the restriction operator to the Toeplitz operator on the Bergman space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2020-04, Vol.30 (2), p.2157-2188
Hauptverfasser: Chakrabarti, Debraj, Şahutoğlu, Sönmez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by questions related to the compactness of the ∂ ¯ -Neumann operator, we study the restriction operator from the Bergman space of a domain in C n to the Bergman space of a non-empty open subset of the domain. We relate the restriction operator to the Toeplitz operator on the Bergman space of the domain whose symbol is the characteristic function of the subset. Using the biholomorphic invariance of the spectrum of the associated Toeplitz operator, we study the restriction operator from the Bergman space of the unit disc to the Bergman space of subdomains with large symmetry groups, such as horodiscs and subdomains bounded by hypercycles. Furthermore, we prove a sharp estimate of the norm of the restriction operator in case the domain and the subdomain are balls. We also study various operator theoretic properties of the restriction operator such as compactness and essential norm estimates.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-019-00178-3