Geometric formulas on Rumely’s weight function and crucial measure in non-archimedean dynamics
We introduce the f -crucial function Crucial f associated to a rational function f ∈ K ( z ) of degree > 1 over an algebraically closed field K of possibly positive characteristic that is complete with respect to a non-trivial and non-archimedean absolute value, and give a global and explicit exp...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2020-04, Vol.376 (3-4), p.913-956 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the
f
-crucial function
Crucial
f
associated to a rational function
f
∈
K
(
z
)
of degree
>
1
over an algebraically closed field
K
of possibly positive characteristic that is complete with respect to a non-trivial and non-archimedean absolute value, and give a global and explicit expression of Rumely’s (resultant) function
ordRes
f
in terms of the hyperbolic metric
ρ
on the Berkovich upper half space
H
1
in the Berkovich projective line
P
1
=
P
1
(
K
)
. We also obtain geometric formulas for Rumely’s weight function
w
f
and crucial measure
ν
f
on
P
1
associated to
f
, as well as improvements of Rumely’s principal results. As an application to dynamics, we obtain a quantitative equidistribution of the sequence
(
ν
f
n
)
n
of
f
n
-crucial measures towards the
f
-equilibrium (or canonical) measure
μ
f
on
P
1
. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-019-01884-7 |