Sustainable Development of Human Society in Terms of Natural Depleting Resources Preservation Using Natural Renewable Raw Materials in a Novel Ecological Material Production

In the last few years, the building industry experienced a significant development as a response to the demographic growth of human society and to the increasing demand for housing. Their construction involves the traditional use of concrete as a material that provides added strength to the finished...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2020-04, Vol.12 (7), p.2651
Hauptverfasser: Grădinaru, Cătălina Mihaela, Muntean, Radu, Șerbănoiu, Adrian Alexandru, Ciocan, Vasilică, Burlacu, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the last few years, the building industry experienced a significant development as a response to the demographic growth of human society and to the increasing demand for housing. Their construction involves the traditional use of concrete as a material that provides added strength to the finished building. This is manufactured respecting standard recipes depending on the way of its use. Anyway, all concrete recipes involve the use of mineral aggregates extracted from the riverbed, as is happening in Romania, or rock blocks crushing, as reported in other countries. Under these conditions, the rationalization of the use of natural mineral resources and the identification of new possibilities to reduce their consumption through their replacement with vegetal waste has become an important research issue. In this study, two types of vegetal waste—namely, shredded corn cobs and sunflower stalks—were used to manufacture novel ecological concretes. The vegetal wastes, both in untreated and treated forms (with 20% and 40% of sodium silicate solution), were used to replace 50% of the river (mineral) aggregate volume. The obtained concretes were tested, and the values of some important parameters in the concrete characterization (such as bulk density, water adsorption capacity, compressive strength and splitting tensile strength) were compared with the concrete contains cement CEM II/A-LL 42.5R. The obtained results show that these vegetal wastes have the potential to be used in the manufacturing of new ecological concrete. In addition, this alternative material meets the requirements for the sustainable and healthy development of the environment, offering low-polluting solutions in the context of an increasing demand for constructions.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12072651