On Shift Radix Systems over Imaginary Quadratic Euclidean Domains

In this paper we generalize the shift radix systems to finite dimensional Hermitian vector spaces. Here the integer lattice is replaced by the direct sum of imaginary quadratic Euclidean domains. We prove in two cases that the set of one dimensional Euclidean shift radix systems with finiteness prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta cybernetica (Szeged) 2015-01, Vol.22 (2), p.485-498
Hauptverfasser: Pethő, Attila, Varga, Péter, Weitzer, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue 2
container_start_page 485
container_title Acta cybernetica (Szeged)
container_volume 22
creator Pethő, Attila
Varga, Péter
Weitzer, Mario
description In this paper we generalize the shift radix systems to finite dimensional Hermitian vector spaces. Here the integer lattice is replaced by the direct sum of imaginary quadratic Euclidean domains. We prove in two cases that the set of one dimensional Euclidean shift radix systems with finiteness property is contained in a circle of radius 0.99 around the origin. Thus their structure is much simpler than the structure of analogous sets.
doi_str_mv 10.14232/actacyb.22.2.2015.14
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384571762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384571762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-59aec93c856d3c477a460627455021fe7ef40b430f6204a2685d07144d65771a3</originalsourceid><addsrcrecordid>eNotkE9LAzEQxXNQsNR-BCHgeWsy-bc9llq1UChaBW9hms1qSne3Jrtiv71BO-8w8HjM8H6E3HA25RIE3KHr0Z12U4BpFuMq-xdkxATIwgB_vyKTlPYsj9KSCz0i801Lt5-h7ukLVuGHbk-p902i3bePdNXgR2gxnujzgFXEPji6HNwhVB5bet81GNp0TS5rPCQ_Oe8xeXtYvi6eivXmcbWYrwsHJe8LNUPvZsKVSlfCSWNQaqbBSKUY8NobX0u2k4LVGphE0KWqmOFSVloZw1GMye3_3WPsvgafervvhtjmlxZEKZXhRkNOqf-Ui11K0df2GEOTK1jO7B8ke4ZkAWxWhpR98QvvTlw5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384571762</pqid></control><display><type>article</type><title>On Shift Radix Systems over Imaginary Quadratic Euclidean Domains</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pethő, Attila ; Varga, Péter ; Weitzer, Mario</creator><creatorcontrib>Pethő, Attila ; Varga, Péter ; Weitzer, Mario</creatorcontrib><description>In this paper we generalize the shift radix systems to finite dimensional Hermitian vector spaces. Here the integer lattice is replaced by the direct sum of imaginary quadratic Euclidean domains. We prove in two cases that the set of one dimensional Euclidean shift radix systems with finiteness property is contained in a circle of radius 0.99 around the origin. Thus their structure is much simpler than the structure of analogous sets.</description><identifier>ISSN: 0324-721X</identifier><identifier>DOI: 10.14232/actacyb.22.2.2015.14</identifier><language>eng</language><publisher>Szeged: Laszlo Nyul</publisher><subject>Domains ; Euclidean geometry ; Vector spaces</subject><ispartof>Acta cybernetica (Szeged), 2015-01, Vol.22 (2), p.485-498</ispartof><rights>Copyright Laszlo Nyul Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-59aec93c856d3c477a460627455021fe7ef40b430f6204a2685d07144d65771a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pethő, Attila</creatorcontrib><creatorcontrib>Varga, Péter</creatorcontrib><creatorcontrib>Weitzer, Mario</creatorcontrib><title>On Shift Radix Systems over Imaginary Quadratic Euclidean Domains</title><title>Acta cybernetica (Szeged)</title><description>In this paper we generalize the shift radix systems to finite dimensional Hermitian vector spaces. Here the integer lattice is replaced by the direct sum of imaginary quadratic Euclidean domains. We prove in two cases that the set of one dimensional Euclidean shift radix systems with finiteness property is contained in a circle of radius 0.99 around the origin. Thus their structure is much simpler than the structure of analogous sets.</description><subject>Domains</subject><subject>Euclidean geometry</subject><subject>Vector spaces</subject><issn>0324-721X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkE9LAzEQxXNQsNR-BCHgeWsy-bc9llq1UChaBW9hms1qSne3Jrtiv71BO-8w8HjM8H6E3HA25RIE3KHr0Z12U4BpFuMq-xdkxATIwgB_vyKTlPYsj9KSCz0i801Lt5-h7ukLVuGHbk-p902i3bePdNXgR2gxnujzgFXEPji6HNwhVB5bet81GNp0TS5rPCQ_Oe8xeXtYvi6eivXmcbWYrwsHJe8LNUPvZsKVSlfCSWNQaqbBSKUY8NobX0u2k4LVGphE0KWqmOFSVloZw1GMye3_3WPsvgafervvhtjmlxZEKZXhRkNOqf-Ui11K0df2GEOTK1jO7B8ke4ZkAWxWhpR98QvvTlw5</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Pethő, Attila</creator><creator>Varga, Péter</creator><creator>Weitzer, Mario</creator><general>Laszlo Nyul</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20150101</creationdate><title>On Shift Radix Systems over Imaginary Quadratic Euclidean Domains</title><author>Pethő, Attila ; Varga, Péter ; Weitzer, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-59aec93c856d3c477a460627455021fe7ef40b430f6204a2685d07144d65771a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Domains</topic><topic>Euclidean geometry</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pethő, Attila</creatorcontrib><creatorcontrib>Varga, Péter</creatorcontrib><creatorcontrib>Weitzer, Mario</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta cybernetica (Szeged)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pethő, Attila</au><au>Varga, Péter</au><au>Weitzer, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Shift Radix Systems over Imaginary Quadratic Euclidean Domains</atitle><jtitle>Acta cybernetica (Szeged)</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>22</volume><issue>2</issue><spage>485</spage><epage>498</epage><pages>485-498</pages><issn>0324-721X</issn><abstract>In this paper we generalize the shift radix systems to finite dimensional Hermitian vector spaces. Here the integer lattice is replaced by the direct sum of imaginary quadratic Euclidean domains. We prove in two cases that the set of one dimensional Euclidean shift radix systems with finiteness property is contained in a circle of radius 0.99 around the origin. Thus their structure is much simpler than the structure of analogous sets.</abstract><cop>Szeged</cop><pub>Laszlo Nyul</pub><doi>10.14232/actacyb.22.2.2015.14</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0324-721X
ispartof Acta cybernetica (Szeged), 2015-01, Vol.22 (2), p.485-498
issn 0324-721X
language eng
recordid cdi_proquest_journals_2384571762
source EZB-FREE-00999 freely available EZB journals
subjects Domains
Euclidean geometry
Vector spaces
title On Shift Radix Systems over Imaginary Quadratic Euclidean Domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Shift%20Radix%20Systems%20over%20Imaginary%20Quadratic%20Euclidean%20Domains&rft.jtitle=Acta%20cybernetica%20(Szeged)&rft.au=Peth%C5%91,%20Attila&rft.date=2015-01-01&rft.volume=22&rft.issue=2&rft.spage=485&rft.epage=498&rft.pages=485-498&rft.issn=0324-721X&rft_id=info:doi/10.14232/actacyb.22.2.2015.14&rft_dat=%3Cproquest_cross%3E2384571762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384571762&rft_id=info:pmid/&rfr_iscdi=true