On Shift Radix Systems over Imaginary Quadratic Euclidean Domains

In this paper we generalize the shift radix systems to finite dimensional Hermitian vector spaces. Here the integer lattice is replaced by the direct sum of imaginary quadratic Euclidean domains. We prove in two cases that the set of one dimensional Euclidean shift radix systems with finiteness prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta cybernetica (Szeged) 2015-01, Vol.22 (2), p.485-498
Hauptverfasser: Pethő, Attila, Varga, Péter, Weitzer, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we generalize the shift radix systems to finite dimensional Hermitian vector spaces. Here the integer lattice is replaced by the direct sum of imaginary quadratic Euclidean domains. We prove in two cases that the set of one dimensional Euclidean shift radix systems with finiteness property is contained in a circle of radius 0.99 around the origin. Thus their structure is much simpler than the structure of analogous sets.
ISSN:0324-721X
DOI:10.14232/actacyb.22.2.2015.14