Hyperchaos, quasi-period and coexisting behaviors in second-order-memristor-based jerk circuit
This paper generalizes a second-order-memristor-based jerk circuit, which is achieved by substituting the first-order memristor contained diode-bridge and RC filter in an existing memristive jerk circuit with a second-order one composed of diode-bridge and LC network. The second-order-memristor-base...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2020-03, Vol.229 (6-7), p.1045-1058 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper generalizes a second-order-memristor-based jerk circuit, which is achieved by substituting the first-order memristor contained diode-bridge and RC filter in an existing memristive jerk circuit with a second-order one composed of diode-bridge and LC network. The second-order-memristor-based jerk circuit possesses an unstable saddle-focus and generates complex parameter-dependent dynamics, including hyperchaos, chaos, quasi-period, and period along with coexisting behaviors. The coexistences of symmetric chaotic and quasi-periodic attractors are shown by local attraction basins. Particularly, 2D two-layer-based dynamical maps on the system parameter spaces are employed to perfectly detect complex dynamical behaviors of hyperchaos and quasi-period. Furthermore, hardware breadboard is made for experimental investigations and the measurement results well validate complex parameter-dependent dynamics revealed by the numerical simulations. |
---|---|
ISSN: | 1951-6355 1951-6401 |
DOI: | 10.1140/epjst/e2020-900123-5 |