Scalable and energy-efficient synthesis of CoxP for overall water splitting in alkaline media by high energy ball milling

Earth-abundant catalysts based on transition metal phosphides (TMPs) such as CoxP have recently gained a lot of attention in the field of electrocatalysis and are usually acquired by chemical synthesis. Herein, we present a mechanical synthesis method (high energy ball milling) for preparing a bifun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2020-04, Vol.4 (4), p.1723-1729
Hauptverfasser: Xue, Hongyao, Zhang, Haiqin, Fricke, Sebastian, Lüther, Marco, Yang, Zijiang, Meng, Alan, Bremser, Wolfgang, Li, Zhenjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Earth-abundant catalysts based on transition metal phosphides (TMPs) such as CoxP have recently gained a lot of attention in the field of electrocatalysis and are usually acquired by chemical synthesis. Herein, we present a mechanical synthesis method (high energy ball milling) for preparing a bifunctional CoxP electrocatalyst at room temperature (25 °C) using black phosphorus (BP) and cobalt(iii) oxide (Co2O3) as raw materials. This safe, energy-efficient and scalable method yields a durable catalyst material, which achieves a current density of 10 mA cm−2 at low overpotentials of 69 mV and 266 mV in 1 M KOH for the HER and OER, respectively, as well as low Tafel-slopes of 50.6 mV dec−1 and 62.1 mV dec−1. When the CoxP electrocatalyst was employed for overall water splitting, current densities of 10 mA cm−2 and 100 mA cm−2 were achieved at 1.59 V and 1.97 V surpassing those of the state-of-the-art Pt/C‖RuO2 setup. Moreover, the outlined synthesis route could potentially be applied to other transition metals allowing for the facile production of other catalysts.
ISSN:2398-4902
DOI:10.1039/c9se00607a