PrFeO3 Photocathodes Prepared Through Spray Pyrolysis
Perovskite oxides are receiving wide interest for photocatalytic and photoelectrochemical devices, owing to their suitable band gaps for solar light absorption and stability in aqueous applications. Herein, we assess the activity of PrFeO3 photocathodes prepared by using spray pyrolysis and calcinat...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2020-03, Vol.7 (6), p.1365-1372 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Perovskite oxides are receiving wide interest for photocatalytic and photoelectrochemical devices, owing to their suitable band gaps for solar light absorption and stability in aqueous applications. Herein, we assess the activity of PrFeO3 photocathodes prepared by using spray pyrolysis and calcination temperatures between 500 and 700 °C. Scanning electron microscopy shows corrugated films of high surface coverage on the conductive glass substrate. The electrochemically active surface area shows slight decreases with temperature increases from 500 to 600 and 700 °C. However, transient photocurrent responses and impedance spectroscopy data showed that films calcined at higher temperatures reduced the probabilities of recombination due to trap states, resulting in faster rates of charge extraction. In this trade‐off, a calcination temperature of 600 °C provided a maximum photocurrent of ‐130±4 μA cm−2 at +0.43 VRHE under simulated sunlight, with an incident photon‐to‐current conversion efficiency of 6.6 % at +0.61 VRHE and 350 nm and an onset potential of +1.4 VRHE for cathodic photocurrent.
Photo finish: PrFeO3 photocathodes are investigated for their photoelectrochemical properties. Using a spray pyrolysis method, an optimal calcination temperature of 600 °C is found and a photocurrent of ‐130 μA cm−2 is achieved, with a high cathodic onset of +1.4 VRHE. |
---|---|
ISSN: | 2196-0216 2196-0216 |
DOI: | 10.1002/celc.201902005 |