Spectral differences in the underwater light regime caused by sediment types in New Zealand estuaries: implications for seagrass photosynthesis

The underwater light regime is fundamental to the ecological health of aquatic systems because it is a limiting factor for photosynthesis in marine plants such as seagrasses. Although seagrass meadows are a key component of coastal systems, their survival has been threatened by increased turbidity l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geo-marine letters 2020-04, Vol.40 (2), p.217-225
Hauptverfasser: Cussioli, Mariana Coppede, Seeger, Dorothea, Pratt, Daniel R., Bryan, Karin R., Bischof, Kai, de Lange, Willem P., Bornman, Janet F., Pilditch, Conrad A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The underwater light regime is fundamental to the ecological health of aquatic systems because it is a limiting factor for photosynthesis in marine plants such as seagrasses. Although seagrass meadows are a key component of coastal systems, their survival has been threatened by increased turbidity levels, both from resuspension of marine sediments and input of terrestrial material. The objective of this study was to investigate how marine (typically grey/white in colour) and terrestrial (typically more yellow-orange in colour with finer texture) sediments affect underwater light quality. Two experimental systems were used: (1) a large outdoor tank and (2) laboratory controlled small sampling container, using natural terrestrial and marine sediment samples (with different colours and grain sizes) from New Zealand. In the tank experiments, high concentrations of sediment reduced transmittance considerably, particularly below 450 nm. Since seagrasses absorb light optimally at wavelengths
ISSN:0276-0460
1432-1157
DOI:10.1007/s00367-020-00640-0