Stratification and mixing processes associated with hypoxia in a shallow lake (Lake Kasumigaura, Japan)
Physical processes associated with hypoxia events in a shallow lake, Lake Kasumigaura, Japan, are investigated with long-term mooring observations at the middle of the lake basin. Results show that strong stratification during the summer suppresses vertical mixing resulting in hypoxia in the bottom...
Gespeichert in:
Veröffentlicht in: | Limnology 2020-04, Vol.21 (2), p.173-186 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Physical processes associated with hypoxia events in a shallow lake, Lake Kasumigaura, Japan, are investigated with long-term mooring observations at the middle of the lake basin. Results show that strong stratification during the summer suppresses vertical mixing resulting in hypoxia in the bottom boundary layer. The dissolved oxygen decreases due to the limited oxygen supply under strongly stratified conditions. The intensity of the stratification is controlled by the ratio between surface wind stress and the surface incoming buoyancy flux. The Monin–Obukhov length scale explains the stratification and shows good agreement with the Froude number and Wedderburn number. The stratification is also enhanced by the heat flux towards the sediments, reaching
O
(100) W m
−2
, during the summer season. In addition to field observations, this study conducted numerical simulations to further investigate mixing structure. Results from numerical simulations indicate that the bottom sediment heat flux significantly contributes to mixing and stratification in the lake. This study suggests that mixing processes associated with winds and heat flux at surface and bottom sediments are the key to understanding hypoxia events in Lake Kasumigaura. |
---|---|
ISSN: | 1439-8621 1439-863X |
DOI: | 10.1007/s10201-019-00600-3 |