Brasselet number and Newton polygons

We present a formula to compute the Brasselet number of f : ( Y , 0 ) → ( C , 0 ) where Y ⊂ X is a non-degenerate complete intersection in a toric variety X . As applications we establish several results concerning invariance of the Brasselet number for families of non-degenerate complete intersecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2020-05, Vol.162 (1-2), p.241-269
Hauptverfasser: Dalbelo, Thaís M., Hartmann, Luiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a formula to compute the Brasselet number of f : ( Y , 0 ) → ( C , 0 ) where Y ⊂ X is a non-degenerate complete intersection in a toric variety X . As applications we establish several results concerning invariance of the Brasselet number for families of non-degenerate complete intersections. Moreover, when ( X , 0 ) = ( C n , 0 ) we derive sufficient conditions to obtain the invariance of the Euler obstruction for families of complete intersections with an isolated singularity which are contained in X .
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-019-01125-w