Brasselet number and Newton polygons
We present a formula to compute the Brasselet number of f : ( Y , 0 ) → ( C , 0 ) where Y ⊂ X is a non-degenerate complete intersection in a toric variety X . As applications we establish several results concerning invariance of the Brasselet number for families of non-degenerate complete intersecti...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2020-05, Vol.162 (1-2), p.241-269 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a formula to compute the Brasselet number of
f
:
(
Y
,
0
)
→
(
C
,
0
)
where
Y
⊂
X
is a non-degenerate complete intersection in a toric variety
X
. As applications we establish several results concerning invariance of the Brasselet number for families of non-degenerate complete intersections. Moreover, when
(
X
,
0
)
=
(
C
n
,
0
)
we derive sufficient conditions to obtain the invariance of the Euler obstruction for families of complete intersections with an isolated singularity which are contained in
X
. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-019-01125-w |