A Sharp Jackson–Chernykh Type Inequality for Spline Approximations on the Line

An analog of the Jackson–Chernykh inequality for spline approximations in the space L 2 ( ) is established in this work. For r ∈ and σ > 0, we denote by A σ r (  f  ) 2 the best approximation of a function f ∈ L 2 ( ) by the space of splines of degree r of minimal defect with knots , j ∈ , and by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vestnik, St. Petersburg University. Mathematics St. Petersburg University. Mathematics, 2020, Vol.53 (1), p.10-19
1. Verfasser: Vinogradov, O. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analog of the Jackson–Chernykh inequality for spline approximations in the space L 2 ( ) is established in this work. For r ∈ and σ > 0, we denote by A σ r (  f  ) 2 the best approximation of a function f ∈ L 2 ( ) by the space of splines of degree r of minimal defect with knots , j ∈ , and by ω(  f , δ) 2 the first-order modulus of continuity of f in L 2 ( ). The main result of our work is as follows. For any f ∈ L 2 ( ), where θ r = and ε r is the positive root of the equation                                                            The constant cannot be reduced on the whole class L 2 ( ) even by increasing the step of the modulus of continuity.
ISSN:1063-4541
1934-7855
DOI:10.1134/S1063454120010112