Generalized Semicommutative Rings

We call a ring R generalized semicommutative if, for any a , b ∈ R , ab = 0 only positive integers m and n exist such that a m Rb n = 0. It is shown that the class of generalized semicommutative rings lies in the class of central semicommutative rings and contains the class of weakly semicommutative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vestnik, St. Petersburg University. Mathematics St. Petersburg University. Mathematics, 2020, Vol.53 (1), p.68-76
Hauptverfasser: Roy, Debraj, Subedi, Tikaram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We call a ring R generalized semicommutative if, for any a , b ∈ R , ab = 0 only positive integers m and n exist such that a m Rb n = 0. It is shown that the class of generalized semicommutative rings lies in the class of central semicommutative rings and contains the class of weakly semicommutative-I rings, where the inclusions are strict. Relationships between generalized semicommutative rings and rings of other known types have been studied. We present a method for producing generalized semicommutative families from a given generalized semicommutative ring. We also provide several criteria for a generalized semicommutative ring to be reduced.
ISSN:1063-4541
1934-7855
DOI:10.1134/S1063454120010094