Structural dissymmetrization of optically anisotropic Grs64±1Adr36±1Sps2 grandite from Meka Presedla (Kopaonik Mt., Serbia)

Copyright © International Centre for Diffraction Data 20192019International Centre for Diffraction DataIn this paper, grandite core with Grs64±1Adr36±1Sps2 composition was crystallographically studied. This core represents zone A of the macroscopically visible five A–E zones of the optically anisotr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder diffraction 2020-03, Vol.35 (1), p.7-16
Hauptverfasser: Tančić, Pavle, Kremenović, Aleksandar, Vulić, Predrag
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Copyright © International Centre for Diffraction Data 20192019International Centre for Diffraction DataIn this paper, grandite core with Grs64±1Adr36±1Sps2 composition was crystallographically studied. This core represents zone A of the macroscopically visible five A–E zones of the optically anisotropic Grs58–64Adr36–42Sps2 grandite. The applied procedure includes the detailed analysis of the powder diffraction patterns, and the Rietveld refinements of the crystal structures in a series of 18 space groups and two mixtures, which were followed by the comparative analysis of the R-values, site occupancy factors, and the bond lengths and angles. Synthesis of all of the presented results allows us to undoubtedly conclude that studied grandite is not cubic, neither as monophase nor as multiple phases in a mixture. Namely, it was established that structural dissymmetrization occurred and that it crystallized in the disordered rhombohedral \(R\bar{3}c\) or orthorhombic Fddd space groups, whereby the first one is more probable. Beside the established lower symmetry of the studied grandite, which could be treated as the primary cause, the residual strain is also not excluded as the second possible cause for its slight optical anisotropy.
ISSN:0885-7156
1945-7413
DOI:10.1017/S0885715619000897