Insight into the Release Agents/PVD Coatings Interaction for Plastic Mold Technology

In polymer processing, the formation of undesired fouling hinders the plastic manufacturing processes. Hence, the use of emulsions as releasing agents is mandatory and their affinity to the mold substrates plays a crucial role. Therefore, this research work has been focused on the wetting properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2020-03, Vol.10 (3), p.281
Hauptverfasser: D’Avico, Luigi, Beltrami, Ruben, Pargoletti, Eleonora, Trasatti, Stefano P.M., Cappelletti, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In polymer processing, the formation of undesired fouling hinders the plastic manufacturing processes. Hence, the use of emulsions as releasing agents is mandatory and their affinity to the mold substrates plays a crucial role. Therefore, this research work has been focused on the wetting properties of commercial water-based release agents (namely Marbocote® W2140, EP, EV-333) towards different Physical Vapor Deposition (PVD) nitride coatings (AlTiN, NbN, ZrN and TiN), usually adopted in the industrial manufacture of Hydrogenated Nitrile Butadiene Rubber (HNBR). The investigated solid substrates were characterized by means of profilometry, SEM/EDX and Surface Free Energy (SFE) analyses, whereas, tensiometric determinations were acquired on the commercial pure and diluted emulsions. The release agents/mold substrates wettability features were studied by means of the work of adhesion and the spreading coefficient. Finally, nitride-coated mold seals were directly tested in an industrial plant with the most performing release agent in terms of adhesive features; for the first time, a deep correlation between the service life, in terms of number of molded seals, and surface (contact angles, work of adhesion and spreading coefficient)/electrochemical (OCP) features was drawn.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings10030281