Generic symmetry-forced infinitesimal rigidity: translations and rotations

We characterize the combinatorial types of symmetric frameworks in the plane that are minimally generically symmetry-forced infinitesimally rigid when the symmetry group consists of rotations and translations. Along the way, we use tropical geometry to show how a construction of Edmonds that associa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-12
1. Verfasser: Daniel Irving Bernstein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the combinatorial types of symmetric frameworks in the plane that are minimally generically symmetry-forced infinitesimally rigid when the symmetry group consists of rotations and translations. Along the way, we use tropical geometry to show how a construction of Edmonds that associates a matroid to a submodular function can be used to give a description of the algebraic matroid of a Hadamard product of two linear spaces in terms of the matroids of each linear space. This leads to new, short, proofs of Laman's theorem, and a theorem of Jord{á}n, Kaszanitzky, and Tanigawa, and Malestein and Theran characterizing the minimally generically symmetry-forced rigid graphs in the plane when the symmetry group contains only rotations.
ISSN:2331-8422