Equitable 2-partitions of Johnson graphs with the second eigenvalue
We study equitable 2-partitions of the Johnson graphs J(n,w) with a quotient matrix containing the eigenvalue lambda_2(w,n) = (w-2)(n-w-2)-2 in its spectrum. For any w>=4 and n>=2w, we find all admissible quotient matrices of such partitions, and characterize all these partitions for w>=4,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study equitable 2-partitions of the Johnson graphs J(n,w) with a quotient matrix containing the eigenvalue lambda_2(w,n) = (w-2)(n-w-2)-2 in its spectrum. For any w>=4 and n>=2w, we find all admissible quotient matrices of such partitions, and characterize all these partitions for w>=4, n>2w, and for w>=7, n = 2w, up to equivalence. |
---|---|
ISSN: | 2331-8422 |