Superlattice period dependence on nonradiative recombination centers in the n-AlGaN layer of UV-B region revealed by below-gap excitation light
Nonradiative recombination (NRR) centers in n-AlGaN layers of UV-B AlGaN samples with different numbers of superlattice (SL) periods (SLPs), grown on the c-plane sapphire substrate at 1150 °C by the metalorganic chemical vapor deposition technique, have been studied by using below-gap-excitation (BG...
Gespeichert in:
Veröffentlicht in: | AIP advances 2020-03, Vol.10 (3), p.035224-035224-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonradiative recombination (NRR) centers in n-AlGaN layers of UV-B AlGaN samples with different numbers of superlattice (SL) periods (SLPs), grown on the c-plane sapphire substrate at 1150 °C by the metalorganic chemical vapor deposition technique, have been studied by using below-gap-excitation (BGE) light in photoluminescence (PL) spectroscopy at 30 K. The SLP affects the lattice relaxation of the SL and n-AlGaN layer. The PL intensity decreased by the superposition of BGE light of energies from 0.93 eV to 1.46 eV over the above-gap-excitation light of energy 4.66 eV, which has been explained by a two-level model based on the Shockley–Read–Hall statistics. The degree of PL quenching from n-AlGaN layers of the sample with SLP 100 is lower than those of other samples with SLP 50, 150, and 200. By a qualitative simulation with the dominant BGE energy of 1.27 eV, the density ratio of NRR centers in n-AlGaN layers of 50:100:150:200 SLP samples is obtained as 1.7:1.0:6.5:3.4. This result implies that the number of SLP changes lattice relaxation and determines the density of NRR centers in the n-AlGaN layer, which affects the performance of LEDs. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/1.5134698 |