Protecting data privacy in publicly verifiable delegation of matrix and polynomial functions

Outsourcing computation has gained significant attention in recent years in particular due to the prevalence of cloud computing. There are two main security concerns in outsourcing computation: guaranteeing that the server performs the computation correctly, and protecting the privacy of the client’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2020-04, Vol.88 (4), p.677-709
Hauptverfasser: Zhang, Liang Feng, Safavi-Naini, Reihaneh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Outsourcing computation has gained significant attention in recent years in particular due to the prevalence of cloud computing. There are two main security concerns in outsourcing computation: guaranteeing that the server performs the computation correctly, and protecting the privacy of the client’s data. The verifiable computation of Gennaro, Gentry and Parno addresses both concerns for outsourcing the computation of a function f on an input x to the cloud. The GGP scheme is privately delegatable, privately verifiable, and based on the expensive cryptographic primitives such as fully homomorphic encryption (FHE). In this paper we consider the problem of outsourcing matrix-vector multiplications of the form F x , where F is a matrix and x is a column vector, and construct publicly delegatable and publicly verifiable schemes. Our schemes are either input private or function private , highly efficient, and provably secure under the well-established assumptions such as the discrete-logarithm assumption. We decompose a polynomial computation, such as computing a univariate polynomial of arbitrary degree, a bivariate polynomial of arbitrary degree, a quadratic multivariate polynomial, and in general any multivariate polynomial, into a two-step computation in which the computaionally expensive step is a matrix-vector multiplication. We use the matrix schemes to outsource the computation of high-degree polynomials and obtain the first high-degree polynomial outsourcing schemes that simultaneously have public delegation , public verification and input privacy / function privacy .
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-019-00704-y