In Situ Surface Modification for Improving the Electrochemical Performance of Ni‐Rich Cathode Materials by Using ZrP2O7

Ni‐rich layered LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode material has promising prospects for high capacity batteries at acceptable cost. However, LiNi0.8Mn0.1Co0.1O2 cathode material suffers from surface structure instability and capacity degradation upon cycling. In this study, in situ ZrP2O7 coating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2020-03, Vol.13 (6), p.1603-1612
Hauptverfasser: Hu, Guorong, Zhang, Zhiyong, Li, Tianfan, Gan, Zhanggen, Du, Ke, Peng, Zhongdong, Xia, Jin, Tao, Yong, Cao, Yanbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1612
container_issue 6
container_start_page 1603
container_title ChemSusChem
container_volume 13
creator Hu, Guorong
Zhang, Zhiyong
Li, Tianfan
Gan, Zhanggen
Du, Ke
Peng, Zhongdong
Xia, Jin
Tao, Yong
Cao, Yanbing
description Ni‐rich layered LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode material has promising prospects for high capacity batteries at acceptable cost. However, LiNi0.8Mn0.1Co0.1O2 cathode material suffers from surface structure instability and capacity degradation upon cycling. In this study, in situ ZrP2O7 coating is introduced to provide a protective structure. The optimum modification amount is 1.0 wt %. A series of characterization methods (X‐ray diffraction, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy) verify the generation and structure of the coating layer. Electrochemical performance tests demonstrate that the cycle retention rate increases from 66.35 to 86.92 % after 100 cycles at 1 C rate. The dense inorganic pyrophosphate layer not only has chemical stability against the electrolyte but also eliminates surface residual lithium. The protective layer and the matrix are strongly joined by high‐temperature heating, thereby giving a certain mechanical strength and protecting the overall structure of the topography. Therefore, the cycle and rate performance are enhanced by the modification with ZrP2O7. Cathodes with coats: In situ ZrP2O7 coating is introduced to provide a protective structure around Ni‐rich layered LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode material, which has a high capacity for use in batteries at acceptable cost but suffers from surface structure instability and capacity degradation upon cycling. With the optimum coating amount of 1.0 wt %, the cycle retention rate increases from 66.35 % to 86.92 % after 100 cycles at 1 C.
doi_str_mv 10.1002/cssc.201902219
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2382468140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382468140</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2709-633f74ab6b0a467f391cc5d508443bca6e5cebf9bbec7406b1dd7b633ba444bc3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhYMoWKtb1wOuU-cvk2QpoWqh2mIsiJthZjJppjSZOkmU7HwEn9EncUqlq_vDd87lniC4RnCCIMS3qm3VBEOUQoxRehKMUMJoGDH6dnrsCToPLtp2AyGDKWOjYJg1IDddD_LelUJp8GQLUxolOmMbUFoHZvXO2U_TrEFXaTDdatU5qypde2gLltp5qBaNl9oSPJvf758XoyqQia6yhfcTnXZGbFsgB7Bq9z7vbokX8WVwVvq1vvqv42B1P33NHsP54mGW3c3DNY5hGjJCypgKySQUlMUlSZFSURHBhFIilWA6UlqWqZRaxRQyiYoill4lBaVUKjIObg6-_o2PXrcd39jeNf4kxyTBlCWIQk-lB-rLbPXAd87Uwg0cQb7Plu-z5cdseZbn2XEif2fRchg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382468140</pqid></control><display><type>article</type><title>In Situ Surface Modification for Improving the Electrochemical Performance of Ni‐Rich Cathode Materials by Using ZrP2O7</title><source>Wiley Online Library All Journals</source><creator>Hu, Guorong ; Zhang, Zhiyong ; Li, Tianfan ; Gan, Zhanggen ; Du, Ke ; Peng, Zhongdong ; Xia, Jin ; Tao, Yong ; Cao, Yanbing</creator><creatorcontrib>Hu, Guorong ; Zhang, Zhiyong ; Li, Tianfan ; Gan, Zhanggen ; Du, Ke ; Peng, Zhongdong ; Xia, Jin ; Tao, Yong ; Cao, Yanbing</creatorcontrib><description>Ni‐rich layered LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode material has promising prospects for high capacity batteries at acceptable cost. However, LiNi0.8Mn0.1Co0.1O2 cathode material suffers from surface structure instability and capacity degradation upon cycling. In this study, in situ ZrP2O7 coating is introduced to provide a protective structure. The optimum modification amount is 1.0 wt %. A series of characterization methods (X‐ray diffraction, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy) verify the generation and structure of the coating layer. Electrochemical performance tests demonstrate that the cycle retention rate increases from 66.35 to 86.92 % after 100 cycles at 1 C rate. The dense inorganic pyrophosphate layer not only has chemical stability against the electrolyte but also eliminates surface residual lithium. The protective layer and the matrix are strongly joined by high‐temperature heating, thereby giving a certain mechanical strength and protecting the overall structure of the topography. Therefore, the cycle and rate performance are enhanced by the modification with ZrP2O7. Cathodes with coats: In situ ZrP2O7 coating is introduced to provide a protective structure around Ni‐rich layered LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode material, which has a high capacity for use in batteries at acceptable cost but suffers from surface structure instability and capacity degradation upon cycling. With the optimum coating amount of 1.0 wt %, the cycle retention rate increases from 66.35 % to 86.92 % after 100 cycles at 1 C.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201902219</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>batteries ; Cathodes ; coatings ; Electrochemical analysis ; electrochemistry ; Electrode materials ; Electrons ; Lithium ; Performance tests ; phosphates ; Photoelectrons ; Protective structures ; Structural stability ; Surface stability ; Surface structure</subject><ispartof>ChemSusChem, 2020-03, Vol.13 (6), p.1603-1612</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8267-5794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201902219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201902219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Hu, Guorong</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><creatorcontrib>Li, Tianfan</creatorcontrib><creatorcontrib>Gan, Zhanggen</creatorcontrib><creatorcontrib>Du, Ke</creatorcontrib><creatorcontrib>Peng, Zhongdong</creatorcontrib><creatorcontrib>Xia, Jin</creatorcontrib><creatorcontrib>Tao, Yong</creatorcontrib><creatorcontrib>Cao, Yanbing</creatorcontrib><title>In Situ Surface Modification for Improving the Electrochemical Performance of Ni‐Rich Cathode Materials by Using ZrP2O7</title><title>ChemSusChem</title><description>Ni‐rich layered LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode material has promising prospects for high capacity batteries at acceptable cost. However, LiNi0.8Mn0.1Co0.1O2 cathode material suffers from surface structure instability and capacity degradation upon cycling. In this study, in situ ZrP2O7 coating is introduced to provide a protective structure. The optimum modification amount is 1.0 wt %. A series of characterization methods (X‐ray diffraction, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy) verify the generation and structure of the coating layer. Electrochemical performance tests demonstrate that the cycle retention rate increases from 66.35 to 86.92 % after 100 cycles at 1 C rate. The dense inorganic pyrophosphate layer not only has chemical stability against the electrolyte but also eliminates surface residual lithium. The protective layer and the matrix are strongly joined by high‐temperature heating, thereby giving a certain mechanical strength and protecting the overall structure of the topography. Therefore, the cycle and rate performance are enhanced by the modification with ZrP2O7. Cathodes with coats: In situ ZrP2O7 coating is introduced to provide a protective structure around Ni‐rich layered LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode material, which has a high capacity for use in batteries at acceptable cost but suffers from surface structure instability and capacity degradation upon cycling. With the optimum coating amount of 1.0 wt %, the cycle retention rate increases from 66.35 % to 86.92 % after 100 cycles at 1 C.</description><subject>batteries</subject><subject>Cathodes</subject><subject>coatings</subject><subject>Electrochemical analysis</subject><subject>electrochemistry</subject><subject>Electrode materials</subject><subject>Electrons</subject><subject>Lithium</subject><subject>Performance tests</subject><subject>phosphates</subject><subject>Photoelectrons</subject><subject>Protective structures</subject><subject>Structural stability</subject><subject>Surface stability</subject><subject>Surface structure</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhYMoWKtb1wOuU-cvk2QpoWqh2mIsiJthZjJppjSZOkmU7HwEn9EncUqlq_vDd87lniC4RnCCIMS3qm3VBEOUQoxRehKMUMJoGDH6dnrsCToPLtp2AyGDKWOjYJg1IDddD_LelUJp8GQLUxolOmMbUFoHZvXO2U_TrEFXaTDdatU5qypde2gLltp5qBaNl9oSPJvf758XoyqQia6yhfcTnXZGbFsgB7Bq9z7vbokX8WVwVvq1vvqv42B1P33NHsP54mGW3c3DNY5hGjJCypgKySQUlMUlSZFSURHBhFIilWA6UlqWqZRaxRQyiYoill4lBaVUKjIObg6-_o2PXrcd39jeNf4kxyTBlCWIQk-lB-rLbPXAd87Uwg0cQb7Plu-z5cdseZbn2XEif2fRchg</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Hu, Guorong</creator><creator>Zhang, Zhiyong</creator><creator>Li, Tianfan</creator><creator>Gan, Zhanggen</creator><creator>Du, Ke</creator><creator>Peng, Zhongdong</creator><creator>Xia, Jin</creator><creator>Tao, Yong</creator><creator>Cao, Yanbing</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-8267-5794</orcidid></search><sort><creationdate>20200320</creationdate><title>In Situ Surface Modification for Improving the Electrochemical Performance of Ni‐Rich Cathode Materials by Using ZrP2O7</title><author>Hu, Guorong ; Zhang, Zhiyong ; Li, Tianfan ; Gan, Zhanggen ; Du, Ke ; Peng, Zhongdong ; Xia, Jin ; Tao, Yong ; Cao, Yanbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2709-633f74ab6b0a467f391cc5d508443bca6e5cebf9bbec7406b1dd7b633ba444bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>batteries</topic><topic>Cathodes</topic><topic>coatings</topic><topic>Electrochemical analysis</topic><topic>electrochemistry</topic><topic>Electrode materials</topic><topic>Electrons</topic><topic>Lithium</topic><topic>Performance tests</topic><topic>phosphates</topic><topic>Photoelectrons</topic><topic>Protective structures</topic><topic>Structural stability</topic><topic>Surface stability</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Guorong</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><creatorcontrib>Li, Tianfan</creatorcontrib><creatorcontrib>Gan, Zhanggen</creatorcontrib><creatorcontrib>Du, Ke</creatorcontrib><creatorcontrib>Peng, Zhongdong</creatorcontrib><creatorcontrib>Xia, Jin</creatorcontrib><creatorcontrib>Tao, Yong</creatorcontrib><creatorcontrib>Cao, Yanbing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Guorong</au><au>Zhang, Zhiyong</au><au>Li, Tianfan</au><au>Gan, Zhanggen</au><au>Du, Ke</au><au>Peng, Zhongdong</au><au>Xia, Jin</au><au>Tao, Yong</au><au>Cao, Yanbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Surface Modification for Improving the Electrochemical Performance of Ni‐Rich Cathode Materials by Using ZrP2O7</atitle><jtitle>ChemSusChem</jtitle><date>2020-03-20</date><risdate>2020</risdate><volume>13</volume><issue>6</issue><spage>1603</spage><epage>1612</epage><pages>1603-1612</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Ni‐rich layered LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode material has promising prospects for high capacity batteries at acceptable cost. However, LiNi0.8Mn0.1Co0.1O2 cathode material suffers from surface structure instability and capacity degradation upon cycling. In this study, in situ ZrP2O7 coating is introduced to provide a protective structure. The optimum modification amount is 1.0 wt %. A series of characterization methods (X‐ray diffraction, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy) verify the generation and structure of the coating layer. Electrochemical performance tests demonstrate that the cycle retention rate increases from 66.35 to 86.92 % after 100 cycles at 1 C rate. The dense inorganic pyrophosphate layer not only has chemical stability against the electrolyte but also eliminates surface residual lithium. The protective layer and the matrix are strongly joined by high‐temperature heating, thereby giving a certain mechanical strength and protecting the overall structure of the topography. Therefore, the cycle and rate performance are enhanced by the modification with ZrP2O7. Cathodes with coats: In situ ZrP2O7 coating is introduced to provide a protective structure around Ni‐rich layered LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode material, which has a high capacity for use in batteries at acceptable cost but suffers from surface structure instability and capacity degradation upon cycling. With the optimum coating amount of 1.0 wt %, the cycle retention rate increases from 66.35 % to 86.92 % after 100 cycles at 1 C.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.201902219</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8267-5794</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2020-03, Vol.13 (6), p.1603-1612
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_journals_2382468140
source Wiley Online Library All Journals
subjects batteries
Cathodes
coatings
Electrochemical analysis
electrochemistry
Electrode materials
Electrons
Lithium
Performance tests
phosphates
Photoelectrons
Protective structures
Structural stability
Surface stability
Surface structure
title In Situ Surface Modification for Improving the Electrochemical Performance of Ni‐Rich Cathode Materials by Using ZrP2O7
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Surface%20Modification%20for%20Improving%20the%20Electrochemical%20Performance%20of%20Ni%E2%80%90Rich%20Cathode%20Materials%20by%20Using%20ZrP2O7&rft.jtitle=ChemSusChem&rft.au=Hu,%20Guorong&rft.date=2020-03-20&rft.volume=13&rft.issue=6&rft.spage=1603&rft.epage=1612&rft.pages=1603-1612&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201902219&rft_dat=%3Cproquest_wiley%3E2382468140%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382468140&rft_id=info:pmid/&rfr_iscdi=true