Vertically Aligned Gold Nanowires as Stretchable and Wearable Epidermal Ion-Selective Electrode for Noninvasive Multiplexed Sweat Analysis
The noninvasive continuous analysis of human sweat is of great significance for improved healthcare diagnostics and treatment in the future, for which a wearable potentiometry-based ion-selective electrode (ISE) has attracted increasing attention, particularly involving ion detection. Note that trad...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-03, Vol.92 (6), p.4647-4655 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The noninvasive continuous analysis of human sweat is of great significance for improved healthcare diagnostics and treatment in the future, for which a wearable potentiometry-based ion-selective electrode (ISE) has attracted increasing attention, particularly involving ion detection. Note that traditional solid-state ISE electrodes are rigid ion-to-electron transducers that are not conformal to soft human skin and cannot function under stretched states. Here, we demonstrated that vertically aligned mushroom-like gold nanowires (v-AuNW) could serve as stretchable and wearable ion-to-electron transducers for multiplexed, in situ potentiometric analysis of pH, Na+, and K+ in sweat. By modifying v-AuNW electrodes with polyaniline, Na ionophore X, and a valinomycin-based selective membrane, we could specifically detect pH, Na+, and K+, respectively, with high selectivity, reproducibility, and stability. Importantly, the electrochemical performance could be maintained even under 30% strain and during stretch-release cycles without the need of extrinsic structural design. Furthermore, our stretchable v-AuNW ISEs could be seamlessly integrated with a flexible printed circuit board, enabling wireless on-body detection of pH, Na+, and K+ with fast response and negligible cross-talk, indicating considerable promise for noninvasive wearable sweat analysis. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.0c00274 |