Integrating Reactors and Catalysts through Three‐Dimensional Printing: Efficiency and Reusability of an Impregnated Palladium on Silica Monolith in Sonogashira and Suzuki Reactions
For this work, an integrated system composed of a polypropylene reactor and a palladium on silica monolithic catalyst was designed and manufactured by 3D‐printing. These devices are able to perform solution phase chemistry in a robotic orbital shaker. The capped reactor was obtained in its entirety...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2020-03, Vol.12 (6), p.1762-1771 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For this work, an integrated system composed of a polypropylene reactor and a palladium on silica monolithic catalyst was designed and manufactured by 3D‐printing. These devices are able to perform solution phase chemistry in a robotic orbital shaker. The capped reactor was obtained in its entirety by 3D‐printing, using polypropylene and fused deposition modeling. The monolithic catalyst was also obtained by 3D‐printing ‐robocasting‐ of a silica support, sintering and subsequent palladium deposition through the wet impregnation method. The catalytic efficiency in Sonogashira or Suzuki reactions as well as the recyclability of the entire system – catalyst+reactor – were studied. The strong electrostatic adsorption (SEA) of the palladium on sintered silica and the reduced mechanical stress produced by the convenient adjustment of the catalyst into the polypropylene reactor makes the catalytic system reusable without significant loss of catalytic activity.
3D‐printing technology was applied for the construction of an integrated polypropylene reactor+palladium on silica catalyst system. Impregnation of the silica monolith with palladium nanoparticles was performed efficiently by strong electrostatic adsorption. Suzuki and Sonogashira reactions were performed. The easy work up, the negligible leaching and the reusability of the entire reactor/catalyst system makes it useful for parallel synthesis in drug discovery. |
---|---|
ISSN: | 1867-3880 1867-3899 |
DOI: | 10.1002/cctc.201902143 |