Stochastic Air-Fuel Ratio Control of Compressed Natural Gas Engines Using State Observer

In this paper, the air-fuel ratio regulation problem of compressed natural gas (CNG) engines considering stochastic L2 disturbance attenuation is researched. A state observer is designed to overcome the unmeasurability of the total air mass and total fuel mass in the cylinder, since the residual air...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-8
Hauptverfasser: Li, Yanxiao, Zhou, Xuesheng, Wang, Jian, Yang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the air-fuel ratio regulation problem of compressed natural gas (CNG) engines considering stochastic L2 disturbance attenuation is researched. A state observer is designed to overcome the unmeasurability of the total air mass and total fuel mass in the cylinder, since the residual air and residual fuel that are included in the residual gas are unmeasured and the residual gas reflects stochasticity. With the proposed state observer, a stochastic robust air-fuel ratio regulator is proposed by using a CNG engine dynamic model to attenuate the uncertain cyclic fluctuation of the fresh air, and the augmented closed-loop system is mean-square stable. A validation of the proposed stochastic robust air-fuel ratio regulator is carried out by the numerical simulation of two working conditions. The accuracy control of the air-fuel ratio is realized by the proposed stochastic robust air-fuel ratio regulator, which in turn leads to an improvement in fuel economy and emission performance of the CNG engines.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/2028398