An Inverse Problem for a Two-Dimensional Time-Fractional Sideways Heat Equation
In this paper, we consider a two-dimensional (2D) time-fractional inverse diffusion problem which is severely ill-posed; i.e., the solution (if it exists) does not depend continuously on the data. A modified kernel method is presented for approximating the solution of this problem, and the convergen...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider a two-dimensional (2D) time-fractional inverse diffusion problem which is severely ill-posed; i.e., the solution (if it exists) does not depend continuously on the data. A modified kernel method is presented for approximating the solution of this problem, and the convergence estimates are obtained based on both a priori choice and a posteriori choice of regularization parameters. The numerical examples illustrate the behavior of the proposed method. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/5865971 |