Cleaner enzymatic production of biodiesel with easy separation procedures triggered by a biocompatible hydrophilic ionic liquid
The great challenges of modern industry and the environment make it important to develop sustainable energy resources with low cost. In this work, a cleaner enzymatic procedure for biodiesel production was developed through the utilization of a biocompatible and hydrophilic ionic liquid [Choline][H...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2020-03, Vol.22 (6), p.1944-1951 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The great challenges of modern industry and the environment make it important to develop sustainable energy resources with low cost. In this work, a cleaner enzymatic procedure for biodiesel production was developed through the utilization of a biocompatible and hydrophilic ionic liquid [Choline][H
2
PO
4
]. This ionic liquid can be synthesized from cheap raw materials through simple neutralization procedures, and it has been proved to be well biocompatible. The utilization of this ionic liquid in Novozym 435 catalyzed biodiesel production makes the reaction and work-up procedures very simple, because its hydrophilicity can lead to the implementation of a pseudo homogeneous reaction and then heterogeneous separation. Various oil resources such as triolein, sunflower oil and castor oil can all be converted to biodiesels with high yields. After the completion of reaction, both the ionic liquid and Novozym 435 can be recycled and reutilized for at least five cycles without a significant activity decrease. In addition, this reaction system can be conveniently scaled up to the multi-gram level with high efficiency and feasible separation. Overall, the above mentioned benefits make this ionic liquid based enzymatic system cleaner for the production of biodiesel and promising for further industrial applications.
A biocompatible and hydrophilic ionic liquid was found to efficiently promote the enzymatic production of biodiesel with excellent yields from different oil resources. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/c9gc03796a |