Two-dimensional Müntz–Legendre hybrid functions: theory and applications for solving fractional-order partial differential equations

In this manuscript, we present a new numerical technique based on two-dimensional Müntz–Legendre hybrid functions to solve fractional-order partial differential equations (FPDEs) in the sense of Caputo derivative, arising in applied sciences. First, one-dimensional (1D) and two-dimensional (2D) Münt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2020-05, Vol.39 (2), Article 111
Hauptverfasser: Sabermahani, Sedigheh, Ordokhani, Yadollah, Yousefi, Sohrab-Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this manuscript, we present a new numerical technique based on two-dimensional Müntz–Legendre hybrid functions to solve fractional-order partial differential equations (FPDEs) in the sense of Caputo derivative, arising in applied sciences. First, one-dimensional (1D) and two-dimensional (2D) Müntz–Legendre hybrid functions are constructed and their properties are provided, respectively. Next, the Riemann–Liouville operational matrix of 2D Müntz–Legendre hybrid functions is presented. Then, applying this operational matrix and collocation method, the considered equation transforms into a system of algebraic equations. Examples display the efficiency and superiority of the technique for solving these problems with a smooth or non-smooth solution over previous works.
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-020-1137-5