An Acoustic Metamaterial-Based Sensor Capable of Multiband Filtering and Amplification
Dispersive acoustic metamaterials (AMMs) with graded refractive index is promising in acoustic sensing enhancement by providing acoustic rainbow trapping (ART) effect. However, previous solutions to this type of AMMs are based on 2D unit cells that require infinite or very large size in the third di...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2020-04, Vol.20 (8), p.4413-4419 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dispersive acoustic metamaterials (AMMs) with graded refractive index is promising in acoustic sensing enhancement by providing acoustic rainbow trapping (ART) effect. However, previous solutions to this type of AMMs are based on 2D unit cells that require infinite or very large size in the third dimension; they cannot integrate with conventional acoustic sensors without deteriorating the ability of acoustic wave manipulation. In order to advance their practical applications, this paper proposes an axisymmetric, microphone embedded AMM device with gradient profile as well as gradient plate thickness and gradient gap width along the axis. Both numerical simulations and experiments are performed to examine the ART effect of the proposed AMM device and demonstrate its excellent capacity of acoustic pressure amplification and multi-band acoustic filtering. Deploying a microphone in the gap does not disturb the acoustic field, so the proposed AMM sensor experimentally achieves remarkable acoustic gains over one order of magnitude. Sound waves of different frequencies are picked up by microphones at different gaps, realizing the real-time spatially splitting of the sound spectrum. The proposed AMM provides excellent immunity to broadband noise and a little weak suppression of the single tone noise while significantly amplifying acoustic signals of a given frequency. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2019.2962279 |