Nonlinear Adaptive Filtering With Kernel Set-Membership Approach

This paper develops nonlinear kernel adaptive filtering algorithms based on the set-membership filtering (SMF) framework. The set-membership-based filtering approach is distinct from the conventional adaptive filtering approaches in that it aims for the filtering error being bounded in magnitude, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2020, Vol.68, p.1515-1528
Hauptverfasser: Chen, Kewei, Werner, Stefan, Kuh, Anthony, Huang, Yih-Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops nonlinear kernel adaptive filtering algorithms based on the set-membership filtering (SMF) framework. The set-membership-based filtering approach is distinct from the conventional adaptive filtering approaches in that it aims for the filtering error being bounded in magnitude, as opposed to seeking to minimize the time average or ensemble average of the squared errors. The proposed kernel SMF algorithms feature selective updates of their parameter estimates by making discerning use of the input data, and selective increase of the dimension in the kernel expansion. These result in less computational cost and faster tracking without compromising the mean-squared error performance. We show, through convergence analysis, that the sequences of parameter estimates of our proposed algorithms are convergent, and the filtering error is asymptotically upper bounded in magnitude. Simulations are performed which show clearly the advantages of the proposed algorithms in terms of lower computational complexity, reduced dictionary size, and steady-state mean-squared errors comparable to existing algorithms.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2020.2975370