A Novel High Performance and Energy Efficient NUCA Architecture for STT-MRAM LLCs With Thermal Consideration
As the speed gap of the modern processor and the off-chip main memory enlarges, on-chip cache capacity increases to sustain the performance scaling. As a result, the cache power occupies a large portion of the total power budget. Spin transfer torque magnetic memory (STT-MRAM) is proposed as a promi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2020-04, Vol.39 (4), p.803-815 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the speed gap of the modern processor and the off-chip main memory enlarges, on-chip cache capacity increases to sustain the performance scaling. As a result, the cache power occupies a large portion of the total power budget. Spin transfer torque magnetic memory (STT-MRAM) is proposed as a promising solution for the low power cache design due to its high integration density and ultralow leakage power. Nevertheless, the high write power and latency of STT-MRAM become new barriers for the commercialization of this emerging technology. In this paper, we investigate the thermal effect on the access performance of STT-MRAM, and observe that the temperature can affect the write delay and energy significantly. Then, we explore the nonuniform cache access (NUCA) design of the chip-multiprocessors with STT-MRAM-based last level cache (LLC). A thermal aware data migration policy, called "Thermosiphon," which takes advantage of the thermal property of STT-MRAM, is proposed to reduce the LLC write energy. This policy splits the LLC into different regions dynamically based on the thermal distribution monitored by thermal sensors available on-chip, and adaptively migrates write intensive data among different thermal regions considering the thermal gradient. Compared to the conventional NUCA design, our proposed design can save 41.2% write energy at most and 13.01% on average with negligible hardware overhead. |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/TCAD.2019.2897707 |