Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform

•Automated identification of soybean plants via orbital sensors.•EOS-MODIS, MSI and OLI multitemporal images.•Soybean discrimination by phenological phases.•Spatial distribution of soybean for public policy purposes. Soybean is the main crop of the Brazilian agribusiness. The near-real-time monitori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2020-02, Vol.169, p.105194, Article 105194
Hauptverfasser: Silva Junior, Carlos Antonio da, Leonel-Junior, Antonio Hérbete Sousa, Rossi, Fernando Saragosa, Correia Filho, Washington Luiz Félix, Santiago, Dimas de Barros, Oliveira-Júnior, José Francisco de, Teodoro, Paulo Eduardo, Lima, Mendelson, Capristo-Silva, Guilherme Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105194
container_title Computers and electronics in agriculture
container_volume 169
creator Silva Junior, Carlos Antonio da
Leonel-Junior, Antonio Hérbete Sousa
Rossi, Fernando Saragosa
Correia Filho, Washington Luiz Félix
Santiago, Dimas de Barros
Oliveira-Júnior, José Francisco de
Teodoro, Paulo Eduardo
Lima, Mendelson
Capristo-Silva, Guilherme Fernando
description •Automated identification of soybean plants via orbital sensors.•EOS-MODIS, MSI and OLI multitemporal images.•Soybean discrimination by phenological phases.•Spatial distribution of soybean for public policy purposes. Soybean is the main crop of the Brazilian agribusiness. The near-real-time monitoring of this crop is important in the production estimate, identification of the progress, and location of the crops. It is also crucial for governmental surveillance institutions regarding sanitary break. Thus, this study aimed to estimate and map soybean areas in almost real time using temporal series multispectral images and vegetation indices (near-infrared and red) in the Google Earth Engine system in the state of Mato Grosso, Brazil. A multitemporal algorithm of the Perpendicular Vegetation Index (PVI) of MODIS, OLI, and MSI images of the 2016/2017 crop yr−1 was created from the identification of soybean areas using the Perpendicular Crop Enhancement Index (PCEI). The use of the MODIS images for the monitoring of soybean areas using the Google Earth Engine platform was a viable and promising automated alternative for large-scale soybean area estimates.
doi_str_mv 10.1016/j.compag.2019.105194
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2378993379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169919311597</els_id><sourcerecordid>2378993379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-23e4b3865e023362f449dc2641fcd16c1e08d2302fa3a34c76c0c6a47f2f0f573</originalsourceid><addsrcrecordid>eNp9UMtO3DAUtVCRmAJ_wMIS60z9mjjeILVooEhU3cDa8jjXGY8SO7UzRcNX8Ml1lK5ZXd17z0PnIHRDyZoSWn87rG0cRtOtGaGqnDZUiTO0oo1klaREfkGrAmsqWit1gb7mfCBlV41coY9fZhx96HCOpx2YgMfehGk-mAQG-4AH375BnvCPZN59j9_8tMcJhjhBf8IZQoYW-8F0kLEJLR73EGIfu1O1M_PL9F1MhTPgY55lpz3gxxi7HvDWpKK1DZ0PMPtOLqbhCp0702e4_j8v0evD9uX-Z_X8-_Hp_vtzZTkXU8U4iB1v6g0QxnnNnBCqtawW1NmW1pYCaVrGCXOGGy6srC2xtRHSMUfcRvJLdLvojin-OZaA-hCPKRRLzbhslOJcqoISC8qmmHMCp8dUwqaTpkTP3euDXrrXc_d66b7Q7hYalAR_PSSdrYdgofUJ7KTb6D8X-Ae3UZEp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378993379</pqid></control><display><type>article</type><title>Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Silva Junior, Carlos Antonio da ; Leonel-Junior, Antonio Hérbete Sousa ; Rossi, Fernando Saragosa ; Correia Filho, Washington Luiz Félix ; Santiago, Dimas de Barros ; Oliveira-Júnior, José Francisco de ; Teodoro, Paulo Eduardo ; Lima, Mendelson ; Capristo-Silva, Guilherme Fernando</creator><creatorcontrib>Silva Junior, Carlos Antonio da ; Leonel-Junior, Antonio Hérbete Sousa ; Rossi, Fernando Saragosa ; Correia Filho, Washington Luiz Félix ; Santiago, Dimas de Barros ; Oliveira-Júnior, José Francisco de ; Teodoro, Paulo Eduardo ; Lima, Mendelson ; Capristo-Silva, Guilherme Fernando</creatorcontrib><description>•Automated identification of soybean plants via orbital sensors.•EOS-MODIS, MSI and OLI multitemporal images.•Soybean discrimination by phenological phases.•Spatial distribution of soybean for public policy purposes. Soybean is the main crop of the Brazilian agribusiness. The near-real-time monitoring of this crop is important in the production estimate, identification of the progress, and location of the crops. It is also crucial for governmental surveillance institutions regarding sanitary break. Thus, this study aimed to estimate and map soybean areas in almost real time using temporal series multispectral images and vegetation indices (near-infrared and red) in the Google Earth Engine system in the state of Mato Grosso, Brazil. A multitemporal algorithm of the Perpendicular Vegetation Index (PVI) of MODIS, OLI, and MSI images of the 2016/2017 crop yr−1 was created from the identification of soybean areas using the Perpendicular Crop Enhancement Index (PCEI). The use of the MODIS images for the monitoring of soybean areas using the Google Earth Engine platform was a viable and promising automated alternative for large-scale soybean area estimates.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2019.105194</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agriculture ; Algorithms ; Earth ; Image enhancement ; Mapping ; MODIS ; Monitoring ; Orbital sensors ; PCEI ; Real time ; Remote sensing ; SojaMaps ; Soybeans ; Vegetation ; Vegetation index ; Vegetation indices</subject><ispartof>Computers and electronics in agriculture, 2020-02, Vol.169, p.105194, Article 105194</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-23e4b3865e023362f449dc2641fcd16c1e08d2302fa3a34c76c0c6a47f2f0f573</citedby><cites>FETCH-LOGICAL-c334t-23e4b3865e023362f449dc2641fcd16c1e08d2302fa3a34c76c0c6a47f2f0f573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compag.2019.105194$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Silva Junior, Carlos Antonio da</creatorcontrib><creatorcontrib>Leonel-Junior, Antonio Hérbete Sousa</creatorcontrib><creatorcontrib>Rossi, Fernando Saragosa</creatorcontrib><creatorcontrib>Correia Filho, Washington Luiz Félix</creatorcontrib><creatorcontrib>Santiago, Dimas de Barros</creatorcontrib><creatorcontrib>Oliveira-Júnior, José Francisco de</creatorcontrib><creatorcontrib>Teodoro, Paulo Eduardo</creatorcontrib><creatorcontrib>Lima, Mendelson</creatorcontrib><creatorcontrib>Capristo-Silva, Guilherme Fernando</creatorcontrib><title>Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform</title><title>Computers and electronics in agriculture</title><description>•Automated identification of soybean plants via orbital sensors.•EOS-MODIS, MSI and OLI multitemporal images.•Soybean discrimination by phenological phases.•Spatial distribution of soybean for public policy purposes. Soybean is the main crop of the Brazilian agribusiness. The near-real-time monitoring of this crop is important in the production estimate, identification of the progress, and location of the crops. It is also crucial for governmental surveillance institutions regarding sanitary break. Thus, this study aimed to estimate and map soybean areas in almost real time using temporal series multispectral images and vegetation indices (near-infrared and red) in the Google Earth Engine system in the state of Mato Grosso, Brazil. A multitemporal algorithm of the Perpendicular Vegetation Index (PVI) of MODIS, OLI, and MSI images of the 2016/2017 crop yr−1 was created from the identification of soybean areas using the Perpendicular Crop Enhancement Index (PCEI). The use of the MODIS images for the monitoring of soybean areas using the Google Earth Engine platform was a viable and promising automated alternative for large-scale soybean area estimates.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Earth</subject><subject>Image enhancement</subject><subject>Mapping</subject><subject>MODIS</subject><subject>Monitoring</subject><subject>Orbital sensors</subject><subject>PCEI</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>SojaMaps</subject><subject>Soybeans</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Vegetation indices</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtO3DAUtVCRmAJ_wMIS60z9mjjeILVooEhU3cDa8jjXGY8SO7UzRcNX8Ml1lK5ZXd17z0PnIHRDyZoSWn87rG0cRtOtGaGqnDZUiTO0oo1klaREfkGrAmsqWit1gb7mfCBlV41coY9fZhx96HCOpx2YgMfehGk-mAQG-4AH375BnvCPZN59j9_8tMcJhjhBf8IZQoYW-8F0kLEJLR73EGIfu1O1M_PL9F1MhTPgY55lpz3gxxi7HvDWpKK1DZ0PMPtOLqbhCp0702e4_j8v0evD9uX-Z_X8-_Hp_vtzZTkXU8U4iB1v6g0QxnnNnBCqtawW1NmW1pYCaVrGCXOGGy6srC2xtRHSMUfcRvJLdLvojin-OZaA-hCPKRRLzbhslOJcqoISC8qmmHMCp8dUwqaTpkTP3euDXrrXc_d66b7Q7hYalAR_PSSdrYdgofUJ7KTb6D8X-Ae3UZEp</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Silva Junior, Carlos Antonio da</creator><creator>Leonel-Junior, Antonio Hérbete Sousa</creator><creator>Rossi, Fernando Saragosa</creator><creator>Correia Filho, Washington Luiz Félix</creator><creator>Santiago, Dimas de Barros</creator><creator>Oliveira-Júnior, José Francisco de</creator><creator>Teodoro, Paulo Eduardo</creator><creator>Lima, Mendelson</creator><creator>Capristo-Silva, Guilherme Fernando</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202002</creationdate><title>Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform</title><author>Silva Junior, Carlos Antonio da ; Leonel-Junior, Antonio Hérbete Sousa ; Rossi, Fernando Saragosa ; Correia Filho, Washington Luiz Félix ; Santiago, Dimas de Barros ; Oliveira-Júnior, José Francisco de ; Teodoro, Paulo Eduardo ; Lima, Mendelson ; Capristo-Silva, Guilherme Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-23e4b3865e023362f449dc2641fcd16c1e08d2302fa3a34c76c0c6a47f2f0f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Earth</topic><topic>Image enhancement</topic><topic>Mapping</topic><topic>MODIS</topic><topic>Monitoring</topic><topic>Orbital sensors</topic><topic>PCEI</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>SojaMaps</topic><topic>Soybeans</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Vegetation indices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva Junior, Carlos Antonio da</creatorcontrib><creatorcontrib>Leonel-Junior, Antonio Hérbete Sousa</creatorcontrib><creatorcontrib>Rossi, Fernando Saragosa</creatorcontrib><creatorcontrib>Correia Filho, Washington Luiz Félix</creatorcontrib><creatorcontrib>Santiago, Dimas de Barros</creatorcontrib><creatorcontrib>Oliveira-Júnior, José Francisco de</creatorcontrib><creatorcontrib>Teodoro, Paulo Eduardo</creatorcontrib><creatorcontrib>Lima, Mendelson</creatorcontrib><creatorcontrib>Capristo-Silva, Guilherme Fernando</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva Junior, Carlos Antonio da</au><au>Leonel-Junior, Antonio Hérbete Sousa</au><au>Rossi, Fernando Saragosa</au><au>Correia Filho, Washington Luiz Félix</au><au>Santiago, Dimas de Barros</au><au>Oliveira-Júnior, José Francisco de</au><au>Teodoro, Paulo Eduardo</au><au>Lima, Mendelson</au><au>Capristo-Silva, Guilherme Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2020-02</date><risdate>2020</risdate><volume>169</volume><spage>105194</spage><pages>105194-</pages><artnum>105194</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•Automated identification of soybean plants via orbital sensors.•EOS-MODIS, MSI and OLI multitemporal images.•Soybean discrimination by phenological phases.•Spatial distribution of soybean for public policy purposes. Soybean is the main crop of the Brazilian agribusiness. The near-real-time monitoring of this crop is important in the production estimate, identification of the progress, and location of the crops. It is also crucial for governmental surveillance institutions regarding sanitary break. Thus, this study aimed to estimate and map soybean areas in almost real time using temporal series multispectral images and vegetation indices (near-infrared and red) in the Google Earth Engine system in the state of Mato Grosso, Brazil. A multitemporal algorithm of the Perpendicular Vegetation Index (PVI) of MODIS, OLI, and MSI images of the 2016/2017 crop yr−1 was created from the identification of soybean areas using the Perpendicular Crop Enhancement Index (PCEI). The use of the MODIS images for the monitoring of soybean areas using the Google Earth Engine platform was a viable and promising automated alternative for large-scale soybean area estimates.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2019.105194</doi></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2020-02, Vol.169, p.105194, Article 105194
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_2378993379
source Elsevier ScienceDirect Journals Complete
subjects Agriculture
Algorithms
Earth
Image enhancement
Mapping
MODIS
Monitoring
Orbital sensors
PCEI
Real time
Remote sensing
SojaMaps
Soybeans
Vegetation
Vegetation index
Vegetation indices
title Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20soybean%20planting%20area%20in%20midwest%20Brazil%20with%20remotely%20sensed%20images%20and%20phenology-based%20algorithm%20using%20the%20Google%20Earth%20Engine%20platform&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Silva%20Junior,%20Carlos%20Antonio%20da&rft.date=2020-02&rft.volume=169&rft.spage=105194&rft.pages=105194-&rft.artnum=105194&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2019.105194&rft_dat=%3Cproquest_cross%3E2378993379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378993379&rft_id=info:pmid/&rft_els_id=S0168169919311597&rfr_iscdi=true