Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform

•Automated identification of soybean plants via orbital sensors.•EOS-MODIS, MSI and OLI multitemporal images.•Soybean discrimination by phenological phases.•Spatial distribution of soybean for public policy purposes. Soybean is the main crop of the Brazilian agribusiness. The near-real-time monitori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2020-02, Vol.169, p.105194, Article 105194
Hauptverfasser: Silva Junior, Carlos Antonio da, Leonel-Junior, Antonio Hérbete Sousa, Rossi, Fernando Saragosa, Correia Filho, Washington Luiz Félix, Santiago, Dimas de Barros, Oliveira-Júnior, José Francisco de, Teodoro, Paulo Eduardo, Lima, Mendelson, Capristo-Silva, Guilherme Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Automated identification of soybean plants via orbital sensors.•EOS-MODIS, MSI and OLI multitemporal images.•Soybean discrimination by phenological phases.•Spatial distribution of soybean for public policy purposes. Soybean is the main crop of the Brazilian agribusiness. The near-real-time monitoring of this crop is important in the production estimate, identification of the progress, and location of the crops. It is also crucial for governmental surveillance institutions regarding sanitary break. Thus, this study aimed to estimate and map soybean areas in almost real time using temporal series multispectral images and vegetation indices (near-infrared and red) in the Google Earth Engine system in the state of Mato Grosso, Brazil. A multitemporal algorithm of the Perpendicular Vegetation Index (PVI) of MODIS, OLI, and MSI images of the 2016/2017 crop yr−1 was created from the identification of soybean areas using the Perpendicular Crop Enhancement Index (PCEI). The use of the MODIS images for the monitoring of soybean areas using the Google Earth Engine platform was a viable and promising automated alternative for large-scale soybean area estimates.
ISSN:0168-1699
1872-7107
DOI:10.1016/j.compag.2019.105194