Nonparametric identification of the mixed hazard model using martingale-based moments

Nonparametric identification of the Mixed Hazard model is shown. The setup allows for covariates that are random, time-varying, satisfy a rich path structure and are censored by events. For each set of model parameters, an observed process is constructed. The process corresponding to the true model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2020-04, Vol.36 (2), p.331-346
1. Verfasser: Ruf, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonparametric identification of the Mixed Hazard model is shown. The setup allows for covariates that are random, time-varying, satisfy a rich path structure and are censored by events. For each set of model parameters, an observed process is constructed. The process corresponding to the true model parameters is a martingale, the ones corresponding to incorrect model parameters are not. The unique martingale structure yields a family of moment conditions that only the true parameters can satisfy. These moments identify the model and suggest a GMM estimation approach. The moments do not require use of the hazard function.
ISSN:0266-4666
1469-4360
DOI:10.1017/S0266466619000033