A semidefinite relaxation method for second-order cone polynomial complementarity problems

This paper discusses how to compute all real solutions of the second-order cone tensor complementarity problem when there are finitely many ones. For this goal, we first formulate the second-order cone tensor complementarity problem as two polynomial optimization problems. Based on the reformulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2020-04, Vol.75 (3), p.629-647
Hauptverfasser: Cheng, Lulu, Zhang, Xinzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses how to compute all real solutions of the second-order cone tensor complementarity problem when there are finitely many ones. For this goal, we first formulate the second-order cone tensor complementarity problem as two polynomial optimization problems. Based on the reformulation, a semidefinite relaxation method is proposed by solving a finite number of semidefinite relaxations with some assumptions. Numerical experiments are given to show the efficiency of the method.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-019-00162-1