The Elliptical Processes: a Family of Fat-tailed Stochastic Processes
We present the elliptical processes -- a family of non-parametric probabilistic models that subsumes the Gaussian process and the Student-t process. This generalization includes a range of new fat-tailed behaviors yet retains computational tractability. We base the elliptical processes on a represen...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the elliptical processes -- a family of non-parametric probabilistic models that subsumes the Gaussian process and the Student-t process. This generalization includes a range of new fat-tailed behaviors yet retains computational tractability. We base the elliptical processes on a representation of elliptical distributions as a continuous mixture of Gaussian distributions and derive closed-form expressions for the marginal and conditional distributions. We perform numerical experiments on robust regression using an elliptical process defined by a piecewise constant mixing distribution, and show advantages compared with a Gaussian process. The elliptical processes may become a replacement for Gaussian processes in several settings, including when the likelihood is not Gaussian or when accurate tail modeling is critical. |
---|---|
ISSN: | 2331-8422 |