Error analysis of higher order trace finite element methods for the surface Stokes equations
The paper studies a higher order unfitted finite element method for the Stokes system posed on a surface in three-dimensional space. The method employs generalized Taylor-Hood finite element pairs on tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal ord...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper studies a higher order unfitted finite element method for the Stokes system posed on a surface in three-dimensional space. The method employs generalized Taylor-Hood finite element pairs on tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal order convergence results are proved. The proofs include a complete quantification of geometric errors stemming from approximate parametric representation of the surface. Numerical experiments include formal convergence studies and an example of the Kelvin-Helmholtz instability problem on the unit sphere. |
---|---|
ISSN: | 2331-8422 |