Scaling K2. II. Assembly of a Fully Automated C5 Planet Candidate Catalog Using EDI-Vetter

We present a uniform transiting exoplanet candidate list for Campaign 5 of the K2 mission. This catalog contains 75 planets with seven multi-planet systems (five double, one triple, and one quadruple planet system). Within the range of our search, we find eight previously undetected candidates, with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2020-04, Vol.159 (4), p.154
Hauptverfasser: Zink, Jon K., Hardegree-Ullman, Kevin K., Christiansen, Jessie L., Dressing, Courtney D., Crossfield, Ian J. M., Petigura, Erik A., Schlieder, Joshua E., Ciardi, David R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a uniform transiting exoplanet candidate list for Campaign 5 of the K2 mission. This catalog contains 75 planets with seven multi-planet systems (five double, one triple, and one quadruple planet system). Within the range of our search, we find eight previously undetected candidates, with the remaining 67 candidates overlapping 51% of the study of Kruse et al. that manually vets candidates from Campaign 5. In order to vet our potential transit signals, we introduce the Exoplanet Detection Identification Vetter (EDI-Vetter), which is a fully automated program able to determine whether a transit signal should be labeled as a false positive or a planet candidate. This automation allows us to create a statistically uniform catalog, ideal for measurements of planet occurrence rate. When tested, the vetting software is able to ensure that our sample is 94.2% reliable against systematic false positives. Additionally, we inject artificial transits at the light-curve level of the raw K2 data and find that the maximum completeness of our pipeline is 70% before vetting and 60% after vetting. For convenience of future studies of occurrence rate, we include measurements of stellar noise (CDPP) and the three-transit window function for each target. This study is part of a larger survey of the K2 data set and the methodology that will be applied to the entirety of that set.
ISSN:0004-6256
1538-3881
DOI:10.3847/1538-3881/ab7448