On the sizes of bi-k-maximal graphs
Let k , n , s , t > 0 be integers and n = s + t ≥ 2 k + 2 . A simple bipartite graph G spanning K s , t is bi- k -maximal , if every subgraph of G has edge-connectivity at most k but any edge addition that does not break its bipartiteness creates a subgraph with connectivity at least k + 1 . We i...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2020-04, Vol.39 (3), p.859-873 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 873 |
---|---|
container_issue | 3 |
container_start_page | 859 |
container_title | Journal of combinatorial optimization |
container_volume | 39 |
creator | Xu, Liqiong Tian, Yingzhi Lai, Hong-Jian |
description | Let
k
,
n
,
s
,
t
>
0
be integers and
n
=
s
+
t
≥
2
k
+
2
. A simple bipartite graph
G
spanning
K
s
,
t
is
bi-
k
-maximal
, if every subgraph of
G
has edge-connectivity at most
k
but any edge addition that does not break its bipartiteness creates a subgraph with connectivity at least
k
+
1
. We investigate the optimal size bounds of the bi-
k
-maximal simple graphs, and prove that if
G
is a bi-
k
-maximal graph with
min
{
s
,
t
}
≥
k
on
n
vertices, then each of the following holds.
Let
m
be an integer. Then there exists a bi-
k
-maximal graph
G
with
m
=
|
E
(
G
)
|
if and only if
m
=
n
k
-
r
k
2
+
(
r
-
1
)
k
for some integer
r
with
1
≤
r
≤
⌊
n
2
k
+
2
⌋
.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≤
(
n
-
k
)
k
, and this upper bound is tight.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≥
k
(
n
-
1
)
-
(
k
2
-
k
)
⌊
n
2
k
+
2
⌋
, and this lower bound is tight. Moreover, the bi-
k
-maximal graphs reaching the optimal bounds are characterized. |
doi_str_mv | 10.1007/s10878-020-00522-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377702048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377702048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-213e94efd46bc56241095d2f47d7bc96227e84c69eba88e653ad9a294562daf03</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEiXwApwi9WxYrx3_HFEFFKlSL3C2nMRpU9ok2KkEPD2GIHHjtHP4ZnZ3CLlmcMMA1G1koJWmgEABCkSKJ2TGCsUpai1Pk-YaqTRQnJOLGHcAkLSYkfm6y8etz2P76WPeN3nZ0ld6cO_twe3zTXDDNl6Ss8bto7_6nRl5ebh_Xizpav34tLhb0QoVjBQZ90b4phayrAqJgoEpamyEqlVZGYmovBaVNL50WntZcFcbh0YktnYN8IzMp9wh9G9HH0e764-hSystcqVU-k7oROFEVaGPMfjGDiEdGz4sA_tdhp3KsAm3P2Ukd0b4ZIoJ7jY-_EX_4_oC1sBfMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377702048</pqid></control><display><type>article</type><title>On the sizes of bi-k-maximal graphs</title><source>Springer Nature - Complete Springer Journals</source><creator>Xu, Liqiong ; Tian, Yingzhi ; Lai, Hong-Jian</creator><creatorcontrib>Xu, Liqiong ; Tian, Yingzhi ; Lai, Hong-Jian</creatorcontrib><description>Let
k
,
n
,
s
,
t
>
0
be integers and
n
=
s
+
t
≥
2
k
+
2
. A simple bipartite graph
G
spanning
K
s
,
t
is
bi-
k
-maximal
, if every subgraph of
G
has edge-connectivity at most
k
but any edge addition that does not break its bipartiteness creates a subgraph with connectivity at least
k
+
1
. We investigate the optimal size bounds of the bi-
k
-maximal simple graphs, and prove that if
G
is a bi-
k
-maximal graph with
min
{
s
,
t
}
≥
k
on
n
vertices, then each of the following holds.
Let
m
be an integer. Then there exists a bi-
k
-maximal graph
G
with
m
=
|
E
(
G
)
|
if and only if
m
=
n
k
-
r
k
2
+
(
r
-
1
)
k
for some integer
r
with
1
≤
r
≤
⌊
n
2
k
+
2
⌋
.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≤
(
n
-
k
)
k
, and this upper bound is tight.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≥
k
(
n
-
1
)
-
(
k
2
-
k
)
⌊
n
2
k
+
2
⌋
, and this lower bound is tight. Moreover, the bi-
k
-maximal graphs reaching the optimal bounds are characterized.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-020-00522-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Combinatorics ; Convex and Discrete Geometry ; Decision trees ; Graph theory ; Graphs ; Integers ; Lower bounds ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Theory of Computation ; Upper bounds</subject><ispartof>Journal of combinatorial optimization, 2020-04, Vol.39 (3), p.859-873</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-213e94efd46bc56241095d2f47d7bc96227e84c69eba88e653ad9a294562daf03</cites><orcidid>0000-0001-7698-2125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-020-00522-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-020-00522-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Xu, Liqiong</creatorcontrib><creatorcontrib>Tian, Yingzhi</creatorcontrib><creatorcontrib>Lai, Hong-Jian</creatorcontrib><title>On the sizes of bi-k-maximal graphs</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>Let
k
,
n
,
s
,
t
>
0
be integers and
n
=
s
+
t
≥
2
k
+
2
. A simple bipartite graph
G
spanning
K
s
,
t
is
bi-
k
-maximal
, if every subgraph of
G
has edge-connectivity at most
k
but any edge addition that does not break its bipartiteness creates a subgraph with connectivity at least
k
+
1
. We investigate the optimal size bounds of the bi-
k
-maximal simple graphs, and prove that if
G
is a bi-
k
-maximal graph with
min
{
s
,
t
}
≥
k
on
n
vertices, then each of the following holds.
Let
m
be an integer. Then there exists a bi-
k
-maximal graph
G
with
m
=
|
E
(
G
)
|
if and only if
m
=
n
k
-
r
k
2
+
(
r
-
1
)
k
for some integer
r
with
1
≤
r
≤
⌊
n
2
k
+
2
⌋
.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≤
(
n
-
k
)
k
, and this upper bound is tight.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≥
k
(
n
-
1
)
-
(
k
2
-
k
)
⌊
n
2
k
+
2
⌋
, and this lower bound is tight. Moreover, the bi-
k
-maximal graphs reaching the optimal bounds are characterized.</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Decision trees</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Integers</subject><subject>Lower bounds</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Theory of Computation</subject><subject>Upper bounds</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEiXwApwi9WxYrx3_HFEFFKlSL3C2nMRpU9ok2KkEPD2GIHHjtHP4ZnZ3CLlmcMMA1G1koJWmgEABCkSKJ2TGCsUpai1Pk-YaqTRQnJOLGHcAkLSYkfm6y8etz2P76WPeN3nZ0ld6cO_twe3zTXDDNl6Ss8bto7_6nRl5ebh_Xizpav34tLhb0QoVjBQZ90b4phayrAqJgoEpamyEqlVZGYmovBaVNL50WntZcFcbh0YktnYN8IzMp9wh9G9HH0e764-hSystcqVU-k7oROFEVaGPMfjGDiEdGz4sA_tdhp3KsAm3P2Ukd0b4ZIoJ7jY-_EX_4_oC1sBfMw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Xu, Liqiong</creator><creator>Tian, Yingzhi</creator><creator>Lai, Hong-Jian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7698-2125</orcidid></search><sort><creationdate>20200401</creationdate><title>On the sizes of bi-k-maximal graphs</title><author>Xu, Liqiong ; Tian, Yingzhi ; Lai, Hong-Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-213e94efd46bc56241095d2f47d7bc96227e84c69eba88e653ad9a294562daf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Decision trees</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Integers</topic><topic>Lower bounds</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Theory of Computation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Liqiong</creatorcontrib><creatorcontrib>Tian, Yingzhi</creatorcontrib><creatorcontrib>Lai, Hong-Jian</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Liqiong</au><au>Tian, Yingzhi</au><au>Lai, Hong-Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the sizes of bi-k-maximal graphs</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>39</volume><issue>3</issue><spage>859</spage><epage>873</epage><pages>859-873</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>Let
k
,
n
,
s
,
t
>
0
be integers and
n
=
s
+
t
≥
2
k
+
2
. A simple bipartite graph
G
spanning
K
s
,
t
is
bi-
k
-maximal
, if every subgraph of
G
has edge-connectivity at most
k
but any edge addition that does not break its bipartiteness creates a subgraph with connectivity at least
k
+
1
. We investigate the optimal size bounds of the bi-
k
-maximal simple graphs, and prove that if
G
is a bi-
k
-maximal graph with
min
{
s
,
t
}
≥
k
on
n
vertices, then each of the following holds.
Let
m
be an integer. Then there exists a bi-
k
-maximal graph
G
with
m
=
|
E
(
G
)
|
if and only if
m
=
n
k
-
r
k
2
+
(
r
-
1
)
k
for some integer
r
with
1
≤
r
≤
⌊
n
2
k
+
2
⌋
.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≤
(
n
-
k
)
k
, and this upper bound is tight.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≥
k
(
n
-
1
)
-
(
k
2
-
k
)
⌊
n
2
k
+
2
⌋
, and this lower bound is tight. Moreover, the bi-
k
-maximal graphs reaching the optimal bounds are characterized.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-020-00522-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7698-2125</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-6905 |
ispartof | Journal of combinatorial optimization, 2020-04, Vol.39 (3), p.859-873 |
issn | 1382-6905 1573-2886 |
language | eng |
recordid | cdi_proquest_journals_2377702048 |
source | Springer Nature - Complete Springer Journals |
subjects | Apexes Combinatorics Convex and Discrete Geometry Decision trees Graph theory Graphs Integers Lower bounds Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Theory of Computation Upper bounds |
title | On the sizes of bi-k-maximal graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20sizes%20of%20bi-k-maximal%20graphs&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Xu,%20Liqiong&rft.date=2020-04-01&rft.volume=39&rft.issue=3&rft.spage=859&rft.epage=873&rft.pages=859-873&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-020-00522-2&rft_dat=%3Cproquest_cross%3E2377702048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377702048&rft_id=info:pmid/&rfr_iscdi=true |