On the sizes of bi-k-maximal graphs
Let k , n , s , t > 0 be integers and n = s + t ≥ 2 k + 2 . A simple bipartite graph G spanning K s , t is bi- k -maximal , if every subgraph of G has edge-connectivity at most k but any edge addition that does not break its bipartiteness creates a subgraph with connectivity at least k + 1 . We i...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2020-04, Vol.39 (3), p.859-873 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
k
,
n
,
s
,
t
>
0
be integers and
n
=
s
+
t
≥
2
k
+
2
. A simple bipartite graph
G
spanning
K
s
,
t
is
bi-
k
-maximal
, if every subgraph of
G
has edge-connectivity at most
k
but any edge addition that does not break its bipartiteness creates a subgraph with connectivity at least
k
+
1
. We investigate the optimal size bounds of the bi-
k
-maximal simple graphs, and prove that if
G
is a bi-
k
-maximal graph with
min
{
s
,
t
}
≥
k
on
n
vertices, then each of the following holds.
Let
m
be an integer. Then there exists a bi-
k
-maximal graph
G
with
m
=
|
E
(
G
)
|
if and only if
m
=
n
k
-
r
k
2
+
(
r
-
1
)
k
for some integer
r
with
1
≤
r
≤
⌊
n
2
k
+
2
⌋
.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≤
(
n
-
k
)
k
, and this upper bound is tight.
Every bi-
k
-maximal graph
G
on
n
vertices satisfies
|
E
(
G
)
|
≥
k
(
n
-
1
)
-
(
k
2
-
k
)
⌊
n
2
k
+
2
⌋
, and this lower bound is tight. Moreover, the bi-
k
-maximal graphs reaching the optimal bounds are characterized. |
---|---|
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-020-00522-2 |