Highly Stable Lithium−Sulfur Batteries Promised by Siloxene: An Effective Cathode Material to Regulate the Adsorption and Conversion of Polysulfides

Designing an appropriate cathode is still a challenge for lithium–sulfur batteries (LSBs) to overcome the polysulfides shuttling and sluggish redox reactions. Herein, 2D siloxene nanosheets are developed by a rational wet‐chemistry exfoliation approach, from which S@siloxene@graphene (Si/G) hybrids...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-03, Vol.30 (12), p.n/a
Hauptverfasser: Wang, Yang, Zhou, Liping, Huang, Jingyun, Wang, Xinyang, Xu, Xinling, Lu, Jianguo, Tian, Yang, Ye, Zhizhen, Tang, Haichao, Lee, Shuit‐Tong, Lu, Yingying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced functional materials
container_volume 30
creator Wang, Yang
Zhou, Liping
Huang, Jingyun
Wang, Xinyang
Xu, Xinling
Lu, Jianguo
Tian, Yang
Ye, Zhizhen
Tang, Haichao
Lee, Shuit‐Tong
Lu, Yingying
description Designing an appropriate cathode is still a challenge for lithium–sulfur batteries (LSBs) to overcome the polysulfides shuttling and sluggish redox reactions. Herein, 2D siloxene nanosheets are developed by a rational wet‐chemistry exfoliation approach, from which S@siloxene@graphene (Si/G) hybrids are constructed as cathodes in Li‐S cells. The siloxene possesses corrugated 2D Si backbone with abundant O grafted in Si6 rings and hydroxyl‐functionalized surface, which can effectively intercept polysulfides via synergistic effects of chemical trapping capability and kinetically enhanced polysulfides conversion. Theoretical analysis further reveals that siloxene can significantly elevate the adsorption energies and lower energy barrier for Li+ diffusion. The LSBs assembled with 2D Si/G hybrid cathodes exhibit greatly enhanced rate performance (919, 759, and 646 mAh g−1 at 4 C with sulfur loading of 1, 2.9, and 4.2 mg cm−2, respectively) and superb durability (demonstrated by 1000 cycles with an initial capacity of 951 mAh g−1 and negligible 0.032% decay rate at 1 C with sulfur loading of 4.2 mg cm−2). It is expected that the study presented here may open up a new vision toward developing high‐performance LSBs with siloxene for practical applications. Corrugated 2D siloxene nanosheets effectively suppress polysulfides shuttling through the synergistic effects of chemisorption, accelerating polysulfides conversion kinetics, lowering electrochemical polarization, and promoting Li+ diffusion. Owing to these merits, such siloxene nanosheets employed in lithium−sulfur battery (LSB) cathodes enable high‐loading LSBs to achieve superior performance, including excellent rate performance and long‐term cyclability.
doi_str_mv 10.1002/adfm.201910331
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377625200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377625200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3561-dd59558dbbf4b83ecefc31375ffec2d7f20cce44af5e53c9840c8c0a9ad77b5a3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEr9XzpY4t9hx3CTcSmkBqRWIgsQtcuw1deXGxXYKfQPOHHhAnoREReXIaXekb3ZWE0WnBHcJxvE5l2rRjTHJCaaU7EQHpEd6HYrjbHe7k-f96ND7OcYkTWlyEH3d6JeZWaNp4KUBNNZhpuvF98fntDaqduiShwBOg0f3zi60B4nKhtbGvkMFF6hfoaFSIIJeARrwMLMS0IS3Hm5QsOgBXmrTaBRmgPrSW7cM2laIVxINbLUC51tpFbq3Zu2bVC3BH0d7ihsPJ7_zKHoaDR8HN53x3fXtoD_uCMp6pCMlyxnLZFmqpMwoCFCCEpqy9qVYpirGQkCScMWAUZFnCRaZwDznMk1LxulRdLa5u3T2tQYfirmtXdVEFjFN017MYowbqruhhLPeO1DF0ukFd-uC4KLtvmi7L7bdN4Z8Y3jTBtb_0EX_ajT58_4ARcmNAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377625200</pqid></control><display><type>article</type><title>Highly Stable Lithium−Sulfur Batteries Promised by Siloxene: An Effective Cathode Material to Regulate the Adsorption and Conversion of Polysulfides</title><source>Wiley Online Library All Journals</source><creator>Wang, Yang ; Zhou, Liping ; Huang, Jingyun ; Wang, Xinyang ; Xu, Xinling ; Lu, Jianguo ; Tian, Yang ; Ye, Zhizhen ; Tang, Haichao ; Lee, Shuit‐Tong ; Lu, Yingying</creator><creatorcontrib>Wang, Yang ; Zhou, Liping ; Huang, Jingyun ; Wang, Xinyang ; Xu, Xinling ; Lu, Jianguo ; Tian, Yang ; Ye, Zhizhen ; Tang, Haichao ; Lee, Shuit‐Tong ; Lu, Yingying</creatorcontrib><description>Designing an appropriate cathode is still a challenge for lithium–sulfur batteries (LSBs) to overcome the polysulfides shuttling and sluggish redox reactions. Herein, 2D siloxene nanosheets are developed by a rational wet‐chemistry exfoliation approach, from which S@siloxene@graphene (Si/G) hybrids are constructed as cathodes in Li‐S cells. The siloxene possesses corrugated 2D Si backbone with abundant O grafted in Si6 rings and hydroxyl‐functionalized surface, which can effectively intercept polysulfides via synergistic effects of chemical trapping capability and kinetically enhanced polysulfides conversion. Theoretical analysis further reveals that siloxene can significantly elevate the adsorption energies and lower energy barrier for Li+ diffusion. The LSBs assembled with 2D Si/G hybrid cathodes exhibit greatly enhanced rate performance (919, 759, and 646 mAh g−1 at 4 C with sulfur loading of 1, 2.9, and 4.2 mg cm−2, respectively) and superb durability (demonstrated by 1000 cycles with an initial capacity of 951 mAh g−1 and negligible 0.032% decay rate at 1 C with sulfur loading of 4.2 mg cm−2). It is expected that the study presented here may open up a new vision toward developing high‐performance LSBs with siloxene for practical applications. Corrugated 2D siloxene nanosheets effectively suppress polysulfides shuttling through the synergistic effects of chemisorption, accelerating polysulfides conversion kinetics, lowering electrochemical polarization, and promoting Li+ diffusion. Owing to these merits, such siloxene nanosheets employed in lithium−sulfur battery (LSB) cathodes enable high‐loading LSBs to achieve superior performance, including excellent rate performance and long‐term cyclability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910331</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Cathodes ; Conversion ; conversion kinetics ; Decay rate ; Diffusion barriers ; Electrode materials ; Graphene ; Lithium sulfur batteries ; Materials science ; Polysulfides ; Redox reactions ; siloxene nanosheets ; Sulfur ; two‐dimensional materials</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (12), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3561-dd59558dbbf4b83ecefc31375ffec2d7f20cce44af5e53c9840c8c0a9ad77b5a3</citedby><cites>FETCH-LOGICAL-c3561-dd59558dbbf4b83ecefc31375ffec2d7f20cce44af5e53c9840c8c0a9ad77b5a3</cites><orcidid>0000-0001-9713-8441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201910331$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201910331$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Zhou, Liping</creatorcontrib><creatorcontrib>Huang, Jingyun</creatorcontrib><creatorcontrib>Wang, Xinyang</creatorcontrib><creatorcontrib>Xu, Xinling</creatorcontrib><creatorcontrib>Lu, Jianguo</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Ye, Zhizhen</creatorcontrib><creatorcontrib>Tang, Haichao</creatorcontrib><creatorcontrib>Lee, Shuit‐Tong</creatorcontrib><creatorcontrib>Lu, Yingying</creatorcontrib><title>Highly Stable Lithium−Sulfur Batteries Promised by Siloxene: An Effective Cathode Material to Regulate the Adsorption and Conversion of Polysulfides</title><title>Advanced functional materials</title><description>Designing an appropriate cathode is still a challenge for lithium–sulfur batteries (LSBs) to overcome the polysulfides shuttling and sluggish redox reactions. Herein, 2D siloxene nanosheets are developed by a rational wet‐chemistry exfoliation approach, from which S@siloxene@graphene (Si/G) hybrids are constructed as cathodes in Li‐S cells. The siloxene possesses corrugated 2D Si backbone with abundant O grafted in Si6 rings and hydroxyl‐functionalized surface, which can effectively intercept polysulfides via synergistic effects of chemical trapping capability and kinetically enhanced polysulfides conversion. Theoretical analysis further reveals that siloxene can significantly elevate the adsorption energies and lower energy barrier for Li+ diffusion. The LSBs assembled with 2D Si/G hybrid cathodes exhibit greatly enhanced rate performance (919, 759, and 646 mAh g−1 at 4 C with sulfur loading of 1, 2.9, and 4.2 mg cm−2, respectively) and superb durability (demonstrated by 1000 cycles with an initial capacity of 951 mAh g−1 and negligible 0.032% decay rate at 1 C with sulfur loading of 4.2 mg cm−2). It is expected that the study presented here may open up a new vision toward developing high‐performance LSBs with siloxene for practical applications. Corrugated 2D siloxene nanosheets effectively suppress polysulfides shuttling through the synergistic effects of chemisorption, accelerating polysulfides conversion kinetics, lowering electrochemical polarization, and promoting Li+ diffusion. Owing to these merits, such siloxene nanosheets employed in lithium−sulfur battery (LSB) cathodes enable high‐loading LSBs to achieve superior performance, including excellent rate performance and long‐term cyclability.</description><subject>Adsorption</subject><subject>Cathodes</subject><subject>Conversion</subject><subject>conversion kinetics</subject><subject>Decay rate</subject><subject>Diffusion barriers</subject><subject>Electrode materials</subject><subject>Graphene</subject><subject>Lithium sulfur batteries</subject><subject>Materials science</subject><subject>Polysulfides</subject><subject>Redox reactions</subject><subject>siloxene nanosheets</subject><subject>Sulfur</subject><subject>two‐dimensional materials</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEr9XzpY4t9hx3CTcSmkBqRWIgsQtcuw1deXGxXYKfQPOHHhAnoREReXIaXekb3ZWE0WnBHcJxvE5l2rRjTHJCaaU7EQHpEd6HYrjbHe7k-f96ND7OcYkTWlyEH3d6JeZWaNp4KUBNNZhpuvF98fntDaqduiShwBOg0f3zi60B4nKhtbGvkMFF6hfoaFSIIJeARrwMLMS0IS3Hm5QsOgBXmrTaBRmgPrSW7cM2laIVxINbLUC51tpFbq3Zu2bVC3BH0d7ihsPJ7_zKHoaDR8HN53x3fXtoD_uCMp6pCMlyxnLZFmqpMwoCFCCEpqy9qVYpirGQkCScMWAUZFnCRaZwDznMk1LxulRdLa5u3T2tQYfirmtXdVEFjFN017MYowbqruhhLPeO1DF0ukFd-uC4KLtvmi7L7bdN4Z8Y3jTBtb_0EX_ajT58_4ARcmNAQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wang, Yang</creator><creator>Zhou, Liping</creator><creator>Huang, Jingyun</creator><creator>Wang, Xinyang</creator><creator>Xu, Xinling</creator><creator>Lu, Jianguo</creator><creator>Tian, Yang</creator><creator>Ye, Zhizhen</creator><creator>Tang, Haichao</creator><creator>Lee, Shuit‐Tong</creator><creator>Lu, Yingying</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9713-8441</orcidid></search><sort><creationdate>20200301</creationdate><title>Highly Stable Lithium−Sulfur Batteries Promised by Siloxene: An Effective Cathode Material to Regulate the Adsorption and Conversion of Polysulfides</title><author>Wang, Yang ; Zhou, Liping ; Huang, Jingyun ; Wang, Xinyang ; Xu, Xinling ; Lu, Jianguo ; Tian, Yang ; Ye, Zhizhen ; Tang, Haichao ; Lee, Shuit‐Tong ; Lu, Yingying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3561-dd59558dbbf4b83ecefc31375ffec2d7f20cce44af5e53c9840c8c0a9ad77b5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Cathodes</topic><topic>Conversion</topic><topic>conversion kinetics</topic><topic>Decay rate</topic><topic>Diffusion barriers</topic><topic>Electrode materials</topic><topic>Graphene</topic><topic>Lithium sulfur batteries</topic><topic>Materials science</topic><topic>Polysulfides</topic><topic>Redox reactions</topic><topic>siloxene nanosheets</topic><topic>Sulfur</topic><topic>two‐dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Zhou, Liping</creatorcontrib><creatorcontrib>Huang, Jingyun</creatorcontrib><creatorcontrib>Wang, Xinyang</creatorcontrib><creatorcontrib>Xu, Xinling</creatorcontrib><creatorcontrib>Lu, Jianguo</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Ye, Zhizhen</creatorcontrib><creatorcontrib>Tang, Haichao</creatorcontrib><creatorcontrib>Lee, Shuit‐Tong</creatorcontrib><creatorcontrib>Lu, Yingying</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yang</au><au>Zhou, Liping</au><au>Huang, Jingyun</au><au>Wang, Xinyang</au><au>Xu, Xinling</au><au>Lu, Jianguo</au><au>Tian, Yang</au><au>Ye, Zhizhen</au><au>Tang, Haichao</au><au>Lee, Shuit‐Tong</au><au>Lu, Yingying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Stable Lithium−Sulfur Batteries Promised by Siloxene: An Effective Cathode Material to Regulate the Adsorption and Conversion of Polysulfides</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>12</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Designing an appropriate cathode is still a challenge for lithium–sulfur batteries (LSBs) to overcome the polysulfides shuttling and sluggish redox reactions. Herein, 2D siloxene nanosheets are developed by a rational wet‐chemistry exfoliation approach, from which S@siloxene@graphene (Si/G) hybrids are constructed as cathodes in Li‐S cells. The siloxene possesses corrugated 2D Si backbone with abundant O grafted in Si6 rings and hydroxyl‐functionalized surface, which can effectively intercept polysulfides via synergistic effects of chemical trapping capability and kinetically enhanced polysulfides conversion. Theoretical analysis further reveals that siloxene can significantly elevate the adsorption energies and lower energy barrier for Li+ diffusion. The LSBs assembled with 2D Si/G hybrid cathodes exhibit greatly enhanced rate performance (919, 759, and 646 mAh g−1 at 4 C with sulfur loading of 1, 2.9, and 4.2 mg cm−2, respectively) and superb durability (demonstrated by 1000 cycles with an initial capacity of 951 mAh g−1 and negligible 0.032% decay rate at 1 C with sulfur loading of 4.2 mg cm−2). It is expected that the study presented here may open up a new vision toward developing high‐performance LSBs with siloxene for practical applications. Corrugated 2D siloxene nanosheets effectively suppress polysulfides shuttling through the synergistic effects of chemisorption, accelerating polysulfides conversion kinetics, lowering electrochemical polarization, and promoting Li+ diffusion. Owing to these merits, such siloxene nanosheets employed in lithium−sulfur battery (LSB) cathodes enable high‐loading LSBs to achieve superior performance, including excellent rate performance and long‐term cyclability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910331</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9713-8441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-03, Vol.30 (12), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2377625200
source Wiley Online Library All Journals
subjects Adsorption
Cathodes
Conversion
conversion kinetics
Decay rate
Diffusion barriers
Electrode materials
Graphene
Lithium sulfur batteries
Materials science
Polysulfides
Redox reactions
siloxene nanosheets
Sulfur
two‐dimensional materials
title Highly Stable Lithium−Sulfur Batteries Promised by Siloxene: An Effective Cathode Material to Regulate the Adsorption and Conversion of Polysulfides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Stable%20Lithium%E2%88%92Sulfur%20Batteries%20Promised%20by%20Siloxene:%20An%20Effective%20Cathode%20Material%20to%20Regulate%20the%20Adsorption%20and%20Conversion%20of%20Polysulfides&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Yang&rft.date=2020-03-01&rft.volume=30&rft.issue=12&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910331&rft_dat=%3Cproquest_cross%3E2377625200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377625200&rft_id=info:pmid/&rfr_iscdi=true