Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis

With the emergence of high-throughput methods in plant biology, the importance of long-term projects characterized by incremental advances involving multiple laboratories can sometimes be overlooked. Here, I highlight my 40-year effort to isolate and characterize the most common class of mutants enc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2020-04, Vol.226 (2), p.306-325
1. Verfasser: Meinke, David W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the emergence of high-throughput methods in plant biology, the importance of long-term projects characterized by incremental advances involving multiple laboratories can sometimes be overlooked. Here, I highlight my 40-year effort to isolate and characterize the most common class of mutants encountered in Arabidopsis (Arabidopsis thaliana): those defective in embryo development. I present an updated dataset of 510 EMBRYO-DEFECTIVE (EMB) genes identified throughout the Arabidopsis community; include important details on 2200 emb mutants and 241 pigment-defective embryo (pde) mutants analyzed in my laboratory; provide curated datasets with key features and publication links for each EMB gene identified; revisit past estimates of 500–1000 total EMB genes in Arabidopsis; document 83 double mutant combinations reported to disrupt embryo development; emphasize the importance of following established nomenclature guidelines and acknowledging allele history in research publications; and consider how best to extend community-based curation and screening efforts to approach saturation for this diverse class of mutants in the future. Continued advances in identifying EMB genes and characterizing their loss-of-function mutant alleles are needed to understand genotype-to-phenotype relationships in Arabidopsis on a broad scale, and to document the contributions of large numbers of essential genes to plant growth and development.
ISSN:0028-646X
1469-8137
1469-8137
DOI:10.1111/nph.16071