Machine learning analysis of rogue solitons in supercontinuum generation

Supercontinuum generation is a highly nonlinear process that exhibits unstable and chaotic characteristics when developing from long pump pulses injected into the anomalous dispersion regime of an optical fiber. A particular feature associated with this regime is the long-tailed "rogue wave&quo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-03
Hauptverfasser: Salmela, Lauri, Lapre, Coraline, Dudley, John M, Genty, Goëry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supercontinuum generation is a highly nonlinear process that exhibits unstable and chaotic characteristics when developing from long pump pulses injected into the anomalous dispersion regime of an optical fiber. A particular feature associated with this regime is the long-tailed "rogue wave"-like statistics of the spectral intensity on the long wavelength edge of the supercontinuum, linked to the generation of a small number of "rogue solitons" with extreme red-shifts. Here, we apply machine learning to analyze the characteristics of these solitons at the edge of the supercontinuum spectrum, and show how supervised learning can train a neural network to predict the peak power, duration, and temporal delay of these solitons from only the supercontinuum spectral intensity without phase information. The network accurately predicts soliton characteristics for a wide range of scenarios, from the onset of spectral broadening dominated by pure modulation instability to near octave-spanning supercontinuum with distinct rogue solitons.
ISSN:2331-8422