Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models

We consider an equivariant approach imposing data-driven bounds for the variances to avoid singular and spurious solutions in maximum likelihood estimation of clusterwise linear regression models. We investigate its use in the choice of the number of components and we propose a computational shortcu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods & applications 2020-03, Vol.29 (1), p.49-78
Hauptverfasser: Di Mari, Roberto, Rocci, Roberto, Gattone, Stefano Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an equivariant approach imposing data-driven bounds for the variances to avoid singular and spurious solutions in maximum likelihood estimation of clusterwise linear regression models. We investigate its use in the choice of the number of components and we propose a computational shortcut, which significantly reduces the computational time needed to tune the bounds on the data. In the simulation study and the two real-data applications, we show that the proposed methods guarantee a reliable assessment of the number of components compared to standard unconstrained methods, together with accurate model parameters estimation and cluster recovery.
ISSN:1618-2510
1613-981X
DOI:10.1007/s10260-019-00480-y