Development of a Robotic System for Automated Decaking of 3D-Printed Parts
With the rapid rise of 3D-printing as a competitive mass manufacturing method, manual "decaking" - i.e. removing the residual powder that sticks to a 3D-printed part - has become a significant bottleneck. Here, we introduce, for the first time to our knowledge, a robotic system for automat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the rapid rise of 3D-printing as a competitive mass manufacturing method, manual "decaking" - i.e. removing the residual powder that sticks to a 3D-printed part - has become a significant bottleneck. Here, we introduce, for the first time to our knowledge, a robotic system for automated decaking of 3D-printed parts. Combining Deep Learning for 3D perception, smart mechanical design, motion planning, and force control for industrial robots, we developed a system that can automatically decake parts in a fast and efficient way. Through a series of decaking experiments performed on parts printed by a Multi Jet Fusion printer, we demonstrated the feasibility of robotic decaking for 3D-printing-based mass manufacturing. |
---|---|
ISSN: | 2331-8422 |