Non-standard inference for augmented double autoregressive models with null volatility coefficients

This paper considers an augmented double autoregressive (DAR) model, which allows null volatility coefficients to circumvent the over-parameterization problem in the DAR model. Since the volatility coefficients might be on the boundary, the statistical inference methods based on the Gaussian quasi-m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2020-03, Vol.215 (1), p.165-183
Hauptverfasser: Jiang, Feiyu, Li, Dong, Zhu, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers an augmented double autoregressive (DAR) model, which allows null volatility coefficients to circumvent the over-parameterization problem in the DAR model. Since the volatility coefficients might be on the boundary, the statistical inference methods based on the Gaussian quasi-maximum likelihood estimation (GQMLE) become non-standard, and their asymptotics require the data to have a finite sixth moment, which narrows the applicable scope in studying heavy-tailed data. To overcome this deficiency, this paper develops a systematic statistical inference procedure based on the self-weighted GQMLE for the augmented DAR model. Except for the Lagrange multiplier test statistic, the Wald, quasi-likelihood ratio and portmanteau test statistics are all shown to have non-standard asymptotics. The entire procedure is valid as long as the data are stationary, and its usefulness is illustrated by simulation studies and one real example.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2019.08.009