Predicting the Geographic Distribution of the Bacillus anthracis A1.a/Western North American Sub-Lineage for the Continental United States: New Outbreaks, New Genotypes, and New Climate Data

Bacillus anthracis, the causative pathogen of anthrax, is a spore-forming, environmentally maintained bacterium that continues to be a veterinary health problem with outbreaks occurring primarily in wildlife and livestock. Globally, the genetic populations of B. anthracis include multiple lineages,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of tropical medicine and hygiene 2020-02, Vol.102 (2), p.392-402
Hauptverfasser: Yang, Anni, Mullins, Jocelyn C., Van Ert, Matthew, Bowen, Richard A., Hadfield, Ted L., Blackburn, Jason K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacillus anthracis, the causative pathogen of anthrax, is a spore-forming, environmentally maintained bacterium that continues to be a veterinary health problem with outbreaks occurring primarily in wildlife and livestock. Globally, the genetic populations of B. anthracis include multiple lineages, and each may have different ecological requirements and geographical distributions. It is, therefore, essential to identify environmental associations within lineages to predict geographical distributions and risk areas with improved accuracy. Here, we model the ecological niche and predict the geography of the most widespread sublineage of B. anthracis in the continental United States using updated MERRA-derived (Modern Era Retrospective analysis for Research and Applications; the NASA atmospheric data reanalysis of satellite information with multiple data products) bioclimate variables (i.e., MERRAclim data) and updated soil variables. We filter the occurrence data associated with the A1.a/Western North American sub-lineage of B. anthracis from historical anthrax outbreaks using the multiple-locus variable-number tandem repeat system. In addition, we also incorporate recent cases associated with B. anthracis A1.a sub-lineage from 2008 to 2012 in Montana, Colorado, and Texas. Our results provide the predicted distribution of the A1.a sub-lineage of B. anthracis for the United States with better predictive accuracy and higher spatial resolution than previous estimates. Our prediction serves as an improved disease risk map to better inform anthrax surveillance and control in the United States, particularly the Dakotas and Montana where this sub-lineage is persistent.
ISSN:0002-9637
1476-1645
DOI:10.4269/ajtmh.19-0191